
11/10/2020

HUAWEI CLOUD Hands-on lab
Will show how to use MoXing to recognize handwritten

digits and images from an MNIST dataset on the Modelarts

platform.

HUAWEI CLOUD

Hands-on lab ---Modelarts

Concept Introduction

This section describes how to use MoXing to recognize handwritten digits and images from an

MNIST dataset on the ModelArts platform.

MoXing: MoXing is the network model development API provided by the HUAWEI CLOUD deep

learning service. Compared with native APIs such as TensorFlow and MXNet, MoXing API

simplifies code writing for models. Users only need to care about data input (input_fn) and

model build (model_fn) code to implement high-performance running of any model in multiple

GPUs and distributed systems.

Overview

The following figure shows the process of identifying handwritten digits and images using MoXing.

1. Region Recommendation: Singapore

2. Preparing Data: Obtain the MNIST dataset and upload it to OBS.

3. Training a Model: Use the MoXing framework to compile the model training script and create a

training job for model training.

4. Deploying the Model: After obtaining the trained model file, create a prediction job to deploy the

model as a real-time prediction service.

5. Verifying the Model: Initiate a prediction request and obtain the prediction result.

Preparing Data

ModelArts provides a sample MNIST dataset named Mnist-Data-Set. This example uses this

dataset to build a model. Perform the following operations to upload the dataset to the OBS

directory test-modelarts/dataset-mnist created in preparation.

1. Decompress the Mnist-Data-Set.zip file, for example, to the Mnist-Data-Set directory on the local

PC.

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0007.html#modelarts_10_0007__section336312088
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0007.html#modelarts_10_0007__section1710418164461
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0007.html#modelarts_10_0007__section9958141119468
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0007.html#modelarts_10_0007__section760652810462

Mnist-Data-Set download link: https://test-modelarts-hol001.obs.ap-southeast-

1.myhuaweicloud.com/Modelars-demo-sample/Mnist-Data-Set.zip

2. Create the OBS bucket “test-modelarts/dataset-mnist”

In the Console, on the top left of the screen, select Navigation menu > Storage > Object Storage

Service

Click on Create Bucket

Create the bucket test-modelars

https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/Mnist-Data-Set.zip
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/Mnist-Data-Set.zip

 If the console informs that ‘The bucket name already exists or used by other users. Try another one.’

 Suggest to using other bucket name such as test-modelars-hol001

 Create the folder dataset-mnist in the bucket test-modelars-hol001

3. Upload all files in the Mnist-Data-Set folder to the test-modelarts/dataset-mnist directory on OBS

in batches. For details about how to upload files, see as follows:

Download the OBS browser

Configure the OBS browser, Account Name, Access Key ID (AK), Secret Access Key (SK) is

mandatory.

Upload the file directory to cloud OBS bucket.

The following provides content of the Mnist-Data-Set dataset. .gz is the compressed package.

o t10k-images-idx3-ubyte: validation set, which contains 10,000 samples

o t10k-images-idx3-ubyte.gz: compressed package file of the validation set.

o t10k-labels-idx1-ubyte: labels of the validation set, which contains the labels of the 10,000 samples

o t10k-labels-idx1-ubyte.gz: compressed package file of the validation set label.

o train-images-idx3-ubyte: training set, which contains 60,000 samples

o train-images-idx3-ubyte.gz: compressed package file of the training set.

o train-labels-idx1-ubyte: labels of the training set, which contains the labels of the 60,000 samples

o train-labels-idx1-ubyte.gz: compressed package file of the training set label.

Training a Model

After the data preparation is completed, use the MoXing API to compile the training script code.

ModelArts provides a code sample, train_mnist.py. The following uses this sample to train the

model.

1. Upload the train_mnist.py file to OBS, for example, test-modelarts-hol001/mnist-MoXing-code.

Down load link: https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-

demo-sample/train_mnist.py

2. On the ModelArts management console, choose Training Management > Training Jobs, and

click Create in the upper left corner.

3. On the Modelarts Console page, click Training Management->Training Jobs and Click Create.

Data Source: Select Data path, and then select the OBS path for saving the dataset.

Basic information for creating a training job

https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/train_mnist.py
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/train_mnist.py

Parameters for creating a training job

4. On the Confirm tab page, check the parameters of the training job and click Submit.

5. On the Training Jobs page, when the training job status changes to Running Success, the model

training is completed. If any exception occurs, click the job name to go to the job details page and

view the training job logs.

NOTE:

The training job may take more than 10 minutes to complete. If the training time exceeds a certain

period (for example, one hour), manually stop it to release resources. Otherwise, the account

balance may be insufficient, especially for the models that are trained using GPUs.

6. (Optional) During or after model training, you can create a visualization job to view parameter

statistics.

In Training Output Path, select the value of Training Output Path specified for the training job.

Complete visualization job creation as prompted.

Deploying the Model

After the model training is completed, deploy the model as a real-time prediction service. ModelArts

provides the compiled inference code customize_service.py and configuration file config.json.

Customize_service.py download link: https://test-modelarts-hol001.obs.ap-southeast-

1.myhuaweicloud.com/Modelars-demo-sample/customize_service.py

Config.json download link: https://test-modelarts-hol001.obs.ap-southeast-

1.myhuaweicloud.com/Modelars-demo-sample/config.json

1. Upload the customize_service.py and config.json files to OBS. The files must be stored in the

path for saving the model generated for the training job, for example, test-modelarts-

hol001/output/model.

NOTE:

o The training job creates a model folder in the path specified by Training Output Path to store the

generated model.

o The inference code and configuration file must be uploaded to the model folder.

2. On the ModelArts management console, choose Model Management > Models in the left

navigation pane. The Models page is displayed. Click Import in the upper left corner.

3. On the Import Model page, set required parameters as shown and click Next.

In Meta Model Source, select OBS. Set Meta Model to the path specified by Training Output

Path in the training job but not the model folder under the path. Otherwise, the system cannot find

the model and related files automatically.

https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/customize_service.py
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/customize_service.py
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/config.json
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/config.json

Import Model

4. On the Models page, if the model status changes to Normal, the model has been imported

successfully. Click the triangle next to a model name to expend all versions of the model. In the row

of a version, choose Deploy > Real-Time Services in the Operation column to deploy the model as

a real-time service.

5. On the Deploy page, set parameters by referring to Figure 4 and click Next.

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0007.html#modelarts_10_0007__fig20614113342113

Figure 4 Deploy

6. On the Confirm tab page, check the configurations and click Submit to create a real-time service.

7. After the real-time service is created, the Service Deployment > Real-Time Services page is

displayed. The service deployment takes some time. When the service status changes to Running,

the service is successfully deployed.

Verifying the Model

After the real-time service is deployed, access the service to send a prediction request for test.

1. On the Real-Time Services page, click the name of the real-time service. The real-time service

details page is displayed.

2. On the real-time service details page, click the Prediction tab.

3. Click Upload next to Image File to upload an image with a white handwritten digit on a black

background and click Predict.

Testing data download link: https://test-modelarts-hol001.obs.ap-southeast-

1.myhuaweicloud.com/Modelars-demo-sample/test%20data.zip

https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/test%20data.zip
https://test-modelarts-hol001.obs.ap-southeast-1.myhuaweicloud.com/Modelars-demo-sample/test%20data.zip

After the prediction is completed, the prediction result is displayed in the Test Result pane.

According to the prediction result, the digit on the image is 4.

NOTE:

o As specified in the inference code and configuration files, the size of the image used for prediction

must be 28 x 28 pixels, and the image must be in the JPG format and must contain white

handwritten digits on a black background.

o You are advised not to use the images provided by the dataset. You can use the drawing tool

provided by the Windows operating system to draw an image for prediction.

o If a single-channel image that is not in the required format is used, the prediction result may be

inaccurate.

Figure 5 Prediction result of the real-time service

