-
HDFS文件系统目录简介 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件之后的添加操作。HDFS保证一个文件在一个时刻只被一个调用者执行写操作,而可以被多个调用者执行读操作。 HDFS文件系统中目录结构如下表所示。 表1 HDFS文件系统目录结构(适用于
MRS 3.x之前版本) 路径 类型 简略功能 是否可以删除 删除的后果 /tmp/spark/sparkhive-scratch 固定目录 存放Spark JD
BCS erver中metastore session临时文件 否 任务运行失败 /tmp/sparkhive-scratch 固定目录 存放Spark cli方式运行metastore session临时文件 否 任务运行失败 /tmp/carbon/ 固定目录 数据导入过程中,如果存在异常CarbonData数据,则将异常数据放在此目录下 是 错误数据丢失 /tmp/Loader-${作业名}_${MR作业id} 临时目录 存放Loader Hbase bulkload作业的region信息,作业完成后自动删除 否 Loader Hbase Bulkload作业失败 /tmp/logs 固定目录 MR任务日志在HDFS上的聚合路径 是 MR任务日志丢失 /tmp/archived 固定目录 MR任务日志在HDFS上的归档路径 是 MR任务日志丢失 /tmp/hadoop-yarn/staging 固定目录 保存AM运行作业运行日志、作业概要信息和作业配置属性 否 任务运行异常 /tmp/hadoop-yarn/staging/history/done_intermediate 固定目录 所有任务运行完成后,临时存放/tmp/hadoop-yarn/staging目录下文件 否 MR任务日志丢失 /tmp/hadoop-yarn/staging/history/done 固定目录 周期性扫描线程定期将done_intermediate的日志文件转移到done目录 否 MR任务日志丢失 /tmp/mr-history 固定目录 存储预加载历史记录文件的路径 否 MR历史任务日志数据丢失 /tmp/hive 固定目录 存放Hive的临时文件 否 导致Hive任务失败 /tmp/hive-scratch 固定目录 Hive运行时生成的临时数据,如会话信息等 否 当前执行的任务会失败 /user/{user}/.sparkStaging 固定目录 存储SparkJDB
CS erver应用临时文件 否 executor启动失败 /user/spark/jars 固定目录 存放Spark executor运行依赖包 否 executor启动失败 /user/loader 固定目录 存放loader的作业脏数据以及HBase作业数据的临时存储目录 否 HBase作业失败或者脏数据丢失 /user/loader/etl_dirty_data_dir /user/loader/etl_hbase_putlist_tmp /user/loader/etl_hbase_tmp /user/mapred 固定目录 存放Hadoop相关的文件 否 导致Yarn启动失败 /user/hive 固定目录 Hive相关数据存储的默认路径,包含依赖的spark lib包和用户默认表数据存储位置等 否 用户数据丢失 /user/omm-bulkload 临时目录 HBase批量导入工具临时目录 否 HBase批量导入任务失败 /user/hbase 临时目录 HBase批量导入工具临时目录 否 HBase批量导入任务失败 /sparkJobHistory 固定目录 Spark eventlog数据存储目录 否 HistoryServer服务不可用,任务运行失败 /flume 固定目录 Flume采集到HDFS文件系统中的数据存储目录 否 Flume工作异常 /mr-history/tmp 固定目录 MapReduce作业产生的日志存放位置 是 日志信息丢失 /mr-history/done 固定目录 MR JobHistory Server管理的日志的存放位置 是 日志信息丢失 /tenant 添加租户时创建 配置租户在HDFS中的存储目录,系统默认将自动在“/tenant”目录中以租户名称创建文件夹。例如租户“ta1”,默认HDFS存储目录为“tenant/ta1”。第一次创建租户时,系统自动在HDFS根目录创建“/tenant”目录。支持自定义存储路径。 否 租户不可用 /apps{1~5}/ 固定目录 WebHCat使用到Hive的包的路径 否 执行WebHCat任务会失败 /hbase 固定目录 HBase数据存储目录 否 HBase用户数据丢失 /hbaseFileStream 固定目录 HFS文件存储目录 否 HFS文件丢失,且无法恢复 /ats/active 固定目录 HDFS路径,用于存储活动的应用程序的timeline数据 否 删除后会导致tez任务运行失败 /ats/done 固定目录 HDFS路径,用于存储完成的应用程序的timeline数据 否 删除后会自动创建 /flink 固定目录 存放checkpoint任务数据 否 删除会导致运行任务失败 表2 HDFS文件系统目录结构(适用于MRS 3.x及之后版本) 路径 类型 简略功能 是否可以删除 删除的后果 /tmp/spark2x/sparkhive-scratch 固定目录 存放Spark2x JDBCServer中metastore session临时文件 否 任务运行失败 /tmp/sparkhive-scratch 固定目录 存放Spark2x cli方式运行metastore session临时文件 否 任务运行失败 /tmp/logs/ 固定目录 存放container日志文件 是 container日志不可查看 /tmp/carbon/ 固定目录 数据导入过程中,如果存在异常CarbonData数据,则将异常数据放在此目录下 是 错误数据丢失 /tmp/Loader-${作业名}_${MR作业id} 临时目录 存放Loader Hbase bulkload作业的region信息,作业完成后自动删除 否 Loader Hbase Bulkload作业失败 /tmp/hadoop-omm/yarn/system/rmstore 固定目录 ResourceManager运行状态信息 是 ResourceManager重启后状态信息丢失 /tmp/archived 固定目录 MR任务日志在HDFS上的归档路径 是 MR任务日志丢失 /tmp/hadoop-yarn/staging 固定目录 保存AM运行作业运行日志、作业概要信息和作业配置属性 否 任务运行异常 /tmp/hadoop-yarn/staging/history/done_intermediate 固定目录 所有任务运行完成后,临时存放/tmp/hadoop-yarn/staging目录下文件 否 MR任务日志丢失 /tmp/hadoop-yarn/staging/history/done 固定目录 周期性扫描线程定期将done_intermediate的日志文件转移到done目录 否 MR任务日志丢失 /tmp/mr-history 固定目录 存储预加载历史记录文件的路径 否 MR历史任务日志数据丢失 /tmp/hive-scratch 固定目录 Hive运行时生成的临时数据,如会话信息等 否 当前执行的任务会失败 /user/{user}/.sparkStaging 固定目录 存储SparkJDBCServer应用临时文件 否 executor启动失败 /user/spark2x/jars 固定目录 存放Spark2x executor运行依赖包 否 executor启动失败 /user/loader 固定目录 存放loader的作业脏数据以及HBase作业数据的临时存储目录 否 HBase作业失败或者脏数据丢失 /user/loader/etl_dirty_data_dir /user/loader/etl_hbase_putlist_tmp /user/loader/etl_hbase_tmp /user/oozie 固定目录 存放oozie运行时需要的依赖库,需用户手动上传 否 oozie调度失败 /user/mapred/hadoop-mapreduce-3.1.1.tar.gz 固定文件 MR分布式缓存功能使用的各jar包 否 MR分布式缓存功能无法使用 /user/hive 固定目录 Hive相关数据存储的默认路径,包含依赖的spark lib包和用户默认表数据存储位置等 否 用户数据丢失 /user/omm-bulkload 临时目录 HBase批量导入工具临时目录 否 HBase批量导入任务失败 /user/hbase 临时目录 HBase批量导入工具临时目录 否 HBase批量导入任务失败 /spark2xJobHistory2x 固定目录 Spark2x eventlog数据存储目录 否 HistoryServer服务不可用,任务运行失败 /flume 固定目录 Flume采集到HDFS文件系统中的数据存储目录 否 Flume工作异常 /mr-history/tmp 固定目录 MapReduce作业产生的日志存放位置 是 日志信息丢失 /mr-history/done 固定目录 MR JobHistory Server管理的日志的存放位置 是 日志信息丢失 /tenant 添加租户时创建 配置租户在HDFS中的存储目录,系统默认将自动在“/tenant”目录中以租户名称创建文件夹。例如租户“ta1”,默认HDFS存储目录为“tenant/ta1”。第一次创建租户时,系统自动在HDFS根目录创建“/tenant”目录。支持自定义存储路径。 否 租户不可用 /apps{1~5}/ 固定目录 WebHCat使用到Hive的包的路径 否 执行WebHCat任务会失败 /hbase 固定目录 HBase数据存储目录 否 HBase用户数据丢失 /hbaseFileStream 固定目录 HFS文件存储目录 否 HFS文件丢失,且无法恢复 父主题: 使用HDFS
-
块副本位置选择说明 NodeLabel支持对各个副本的摆放采用不同的策略,如表达式“label-1,label-2,label-3”,表示3个副本分别放到含有label-1、label-2、label-3的DataNode中,不同的副本策略用逗号分隔。 如果label-1,希望放2个副本,可以这样设置表达式:“label-1[replica=2],label-2,label-3”。这种情况下,如果默认副本数是3,则会选择2个带有label-1和一个label-2的节点;如果默认副本数是4,会选择2个带有label-1、一个label-2以及一个label-3的节点。可以注意到,副本数是从左到右依次满足各个副本策略的,但也有副本数超过表达式表述的情况,当默认副本数为5时,多出来的一个副本会放到最后一个节点中,也就是label-3的节点里。 当启用ACLs功能并且用户无权访问表达式中使用的标签时,将不会为副本选择属于该标签的DataNode。
-
多余块副本删除选择说明 如果块副本数超过参数“dfs.replication”值(即用户指定的文件副本数,可以参考修改集群服务配置参数进入HDFS服务全部配置页面,搜索对应参数查看),HDFS会删除多余块副本来保证集群资源利用率。 删除规则如下: 优先删除不满足任何表达式的副本。 示例:文件默认副本数为3 /test标签表达式为“LA[replica=1],LB[replica=1],LC[replica=1]”; /test文件副本分布的四个节点(D1~D4)以及对应标签(LA~LD): D1:LA
D2:LB
D3:LC
D4:LD 则选择删除D4节点上的副本块。 如果所有副本都满足表达式,删除多于表达式指定的数量的副本。 示例:文件默认副本数为3 /test标签表达式为“LA[replica=1],LB[replica=1],LC[replica=1]”; /test文件副本分布的四个节点以及对应标签: D1:LA
D2:LA
D3:LB
D4:LC 则选择删除D1或者D2上的副本块。 如果文件所有者或文件所有者的组不能访问某个标签,则优先删除映射到该标签的DataNode中的副本。
-
基于标签的数据块摆放策略样例 例如某MRS集群有六个DataNode:dn-1,dn-2,dn-3,dn-4,dn-5以及dn-6,对应的IP为10.1.120.[1-6]。有六个目录需要配置标签表达式,Block默认备份数为3。 下面给出3种DataNode标签信息在“host2labels”文件中的表示方式,其作用是一样的。 主机名正则表达式 /dn-[1456]/ = label-1,label-2
/dn-[26]/ = label-1,label-3
/dn-[3456]/ = label-1,label-4
/dn-5/ = label-5 IP地址范围表示方式 10.1.120.[1-6] = label-1
10.1.120.1 = label-2
10.1.120.2 = label-3
10.1.120.[3-6] = label-4
10.1.120.[4-6] = label-2
10.1.120.5 = label-5
10.1.120.6 = label-3 普通的主机名表达式 /dn-1/ = label-1, label-2
/dn-2/ = label-1, label-3
/dn-3/ = label-1, label-4
/dn-4/ = label-1, label-2, label-4
/dn-5/ = label-1, label-2, label-4, label-5
/dn-6/ = label-1, label-2, label-3, label-4 目录的标签表达式设置结果如下: /dir1 = label-1
/dir2 = label-1 && label-3
/dir3 = label-2 || label-4[replica=2]
/dir4 = (label-2 || label-3) && label-4
/dir5 = !label-1
/sdir2.txt = label-1 && label-3[replica=3,fallback=NONE]
/dir6 = label-4[replica=2],label-2 标签表达式设置方式请参考通过命令行配置。 文件的数据块存放结果如下: “/dir1”目录下文件的数据块可存放在dn-1,dn-2,dn-3,dn-4,dn-5和dn-6六个节点中的任意一个。 “/dir2”目录下文件的数据块可存放在dn-2和dn-6节点上。Block默认备份数为3,表达式只匹配了两个DataNode节点,第三个副本会在集群上剩余的节点中选择一个DataNode节点存放。 “/dir3”目录下文件的数据块可存放在dn-1,dn-3,dn-4,dn-5和dn-6中的任意三个节点上。 “/dir4”目录下文件的数据块可存放在dn-4,dn-5和dn-6。 “/dir5”目录下文件的数据块没有匹配到任何一个DataNode,会从整个集群中任意选择三个节点存放(和默认选块策略行为一致)。 “/sdir2.txt”文件的数据块,两个副本存放在dn-2和dn-6节点上,虽然还缺失一个备份节点,但由于使用了fallback=NONE参数,所以只存放两个备份。 “/dir6”目录下文件的数据块在具备label-4的节点中选择2个节点(dn-3 -- dn-6),然后在label-2中选择一个节点,如果用户指定“/dir6”下文件副本数大于3,则多出来的副本均在label-2。
-
操作场景 用户需要通过数据特征灵活配置HDFS文件数据块的存储节点。通过设置HDFS目录/文件对应一个标签表达式,同时设置每个DataNode对应一个或多个标签,从而给文件的数据块存储指定了特定范围的DataNode。 当使用基于标签的数据块摆放策略,为指定的文件选择DataNode节点进行存放时,会根据文件的标签表达式选择出DataNode节点范围,然后在这些DataNode节点范围内,选择出合适的存放节点。 场景1 DataNodes分区场景。 场景说明: 用户需要让不同的应用数据运行在不同的节点,分开管理,就可以通过标签表达式,来实现不同业务的分离,指定业务存放到对应的节点上。 通过配置NodeLabel特性使得: /HBase下的数据存储在DN1、DN2、DN3、DN4节点上。 /Spark下的数据存储在DN5、DN6、DN7、DN8节点上。 图1 DataNode分区场景 通过hdfs nodelabel -setLabelExpression -expression 'LabelA[fallback=NONE]' -path /Hbase命令,给Hbase目录设置表达式。从图1中可知,“/Hbase”文件的数据块副本会被放置在有LabelA标签的节点上,即DN1、DN2、DN3、DN4。 同理,通过hdfs nodelabel -setLabelExpression -expression 'LabelB[fallback=NONE]' -path /Spark命令,给Spark目录设置表达式。在“/Spark”目录下文件对应的数据块副本只能放置到LabelB标签上的节点,如DN5、DN6、DN7、DN8。 设置数据节点的标签参考DataNode节点标签配置。 如果同一个集群上存在多个机架,每个标签下可以有多个机架的DataNodes,以确保数据块摆放的可靠性。 场景2 多机架下指定副本位置场景 场景说明: 在异构集群中,需要分配一些特定的具有高可靠性的节点用以存放重要的商业数据,可以通过标签表达式指定副本位置,指定文件数据块的其中一个副本存放到高可靠性的节点上。 “/data”目录下的数据块,默认三副本情况下,其中至少有一个副本会被存放到RACK1或RACK2机架的节点上(RACK1和RACK2机架的节点为高可靠性节点),另外两个副本会被分别存放到RACK3和RACK4机架的节点上。 图2 场景样例 通过hdfs nodelabel -setLabelExpression -expression 'LabelA||LabelB[fallback=NONE],LabelC,LabelD' -path /data命令给“/data”目录设置表达式。 当向“/data”目录下写数据时,至少有一个数据块副本存放在LabelA或者LabelB标签的节点中,剩余的两个数据块副本会被存放在有LabelC和LabelD标签的节点上。
-
基于标签的数据块摆放策略样例 例如某MRS集群有六个DataNode:dn-1,dn-2,dn-3,dn-4,dn-5以及dn-6,对应的IP为10.1.120.[1-6]。有六个目录需要配置标签表达式,Block默认备份数为3。 下面给出3种DataNode标签信息在“host2labels”文件中的表示方式,其作用是一样的。 主机名正则表达式 /dn-[1456]/ = label-1,label-2
/dn-[26]/ = label-1,label-3
/dn-[3456]/ = label-1,label-4
/dn-5/ = label-5 IP地址范围表示方式 10.1.120.[1-6] = label-1
10.1.120.1 = label-2
10.1.120.2 = label-3
10.1.120.[3-6] = label-4
10.1.120.[4-6] = label-2
10.1.120.5 = label-5
10.1.120.6 = label-3 普通的主机名表达式 /dn-1/ = label-1, label-2
/dn-2/ = label-1, label-3
/dn-3/ = label-1, label-4
/dn-4/ = label-1, label-2, label-4
/dn-5/ = label-1, label-2, label-4, label-5
/dn-6/ = label-1, label-2, label-3, label-4 目录的标签表达式设置结果如下: /dir1 = label-1
/dir2 = label-1 && label-3
/dir3 = label-2 || label-4[replica=2]
/dir4 = (label-2 || label-3) && label-4
/dir5 = !label-1
/sdir2.txt = label-1 && label-3[replica=3,fallback=NONE]
/dir6 = label-4[replica=2],label-2 标签表达式设置方式请参考hdfs nodelabel -setLabelExpression命令。 文件的数据块存放结果如下: “/dir1”目录下文件的数据块可存放在dn-1,dn-2,dn-3,dn-4,dn-5和dn-6六个节点中的任意一个。 “/dir2”目录下文件的数据块可存放在dn-2和dn-6节点上。Block默认备份数为3,表达式只匹配了两个DataNode节点,第三个副本会在集群上剩余的节点中选择一个DataNode节点存放。 “/dir3”目录下文件的数据块可存放在dn-1,dn-3,dn-4,dn-5和dn-6中的任意三个节点上。 “/dir4”目录下文件的数据块可存放在dn-4,dn-5和dn-6。 “/dir5”目录下文件的数据块没有匹配到任何一个DataNode,会从整个集群中任意选择三个节点存放(和默认选块策略行为一致)。 “/sdir2.txt”文件的数据块,两个副本存放在dn-2和dn-6节点上,虽然还缺失一个备份节点,但由于使用了fallback=NONE参数,所以只存放两个备份。 “/dir6”目录下文件的数据块在具备label-4的节点中选择2个节点(dn-3 -- dn-6),然后在label-2中选择一个节点,如果用户指定“/dir6”下文件副本数大于3,则多出来的副本均在label-2。
-
相关文档 如果执行start-balancer.sh,“hadoop-root-balancer-主机名.out”日志显示“Access denied for user test1. Superuser privilege is required”,请参见执行balance常见问题定位方法。 如果在HDFS客户端启动一个Balance进程,该进程被异常停止后,再次执行Balance操作时失败,请参见HDFS执行Balance时被异常停止如何处理。 如果数据出现不均衡,某磁盘过满而其他磁盘未写满,请参见非HDFS数据残留导致数据分布不均衡。 如果单个节点内DataNode的各磁盘使用率不均匀,请参见节点内DataNode磁盘使用率不均衡。 如果需要平衡正在运行的单个DataNode上的磁盘数据,请参见配置HDFS DiskBalancer磁盘均衡。
-
操作场景 HDFS集群可能出现DataNode节点间磁盘利用率不平衡的情况,比如集群中添加新数据节点的场景。如果HDFS出现数据不平衡的状况,可能导致多种问题,比如MapReduce应用程序无法很好地利用本地计算的优势、数据节点之间无法达到更好的网络带宽使用率或节点磁盘无法利用等等。所以MRS集群管理员需要定期检查并保持DataNode数据平衡。 HDFS提供了一个容量均衡程序Balancer。通过运行这个程序,可以使得HDFS集群达到一个平衡的状态,使各DataNode磁盘使用率与HDFS集群磁盘使用率的偏差不超过阈值。图1和图2分别是Balance前后DataNode的磁盘使用率变化。 图1 执行均衡操作前DataNode的磁盘使用率 图2 执行均衡操作后DataNode的磁盘使用率 均衡操作时间估算受两个因素影响: 需要迁移的总数据量: 每个DataNode节点的数据量应大于(平均使用率-阈值)*平均数据量,小于(平均使用率+阈值)*平均数据量。若实际数据量小于最小值或大于最大值即存在不平衡,系统选择所有DataNode节点中偏差最多的数据量作为迁移的总数据量。 Balancer的迁移是按迭代(iteration)方式串行顺序处理的,每个iteration迁移数据量不超过10GB,每个iteration重新计算使用率的情况。 因此针对集群情况,可以大概估算每个iteration耗费的时间(可以通过执行Balancer的日志观察到每次iteration的时间),并用总数据量除以10GB估算任务执行时间。 由于按iteration处理,Balancer可以随时启动或者停止。
-
问题现象 普通集群在Core节点新建用户安装使用客户端报错如下: 2020-03-14 19:16:17,166 WARN shortcircuit.DomainSocketFactory: error creating DomainSocket
java.net.ConnectException: connect(2) error: Permission denied when trying to connect to '/var/run/MRS-HDFS/dn_socket'
at org.apache.hadoop.net.unix.DomainSocket.connect0(Native Method)
at org.apache.hadoop.net.unix.DomainSocket.connect(DomainSocket.java:256)
at org.apache.hadoop.hdfs.shortcircuit.DomainSocketFactory.createSocket(DomainSocketFactory.java:168)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.nextDomainPeer(BlockReaderFactory.java:799)
...
-
查看文件系统目录 可参考以下操作登录HDFS客户端进行查看。 以客户端安装用户,登录安装客户端的节点。 执行以下命令,切换到客户端安装目录。 cd /opt/client 执行以下命令配置环境变量。 source bigdata_env 如果集群为安全模式,执行以下命令进行用户认证。普通模式集群无需执行用户认证。 kinit 组件业务用户 执行以下命令,查看HDFS系统目录。 hdfs dfs -ls 文件夹名称 例如执行以下命令查看HDFS系统中“/”目录下的文件信息: hdfs dfs -ls / 例如执行后结果如下: ...
drwxrwxrwx - mapred hadoop 0 2025-03-10 21:47 /mr-history
drwxrwxrwx - hdfs hadoop 0 2025-03-10 21:47 /mrs
drwx--x--x - admin supergroup 0 2025-03-10 21:47 /tenant
drwxrwxrwx - hdfs hadoop 0 2025-03-10 21:50 /tmp
drwxrwxrwx - hdfs hadoop 0 2025-03-10 21:51 /user
...
-
调整HDFS Shell客户端日志级别 临时调整,关闭该Shell客户端窗口后,日志会还原为默认值。 执行export HADOOP_ROOT_
LOG GER命令可以调整客户端日志级别。 执行export HADOOP_ROOT_LOGGER=日志级别,console,可以调整shell客户端的日志级别。 export HADOOP_ROOT_LOGGER=DEBUG,console,调整为DEBUG。 export HADOOP_ROOT_LOGGER=ERROR,console,调整为ERROR。 永久调整 在HDFS客户端环境变量配置文件“/opt/client/HDFS/component_env”(其中“/opt/client”需要改为实际客户端路径)增加“export HADOOP_ROOT_LOGGER=日志级别,console”。 执行source /opt/client/bigdata_env。 重新执行客户端命令。 父主题: 使用HDFS
-
操作步骤 请参考修改集群服务配置参数,进入HDFS的“全部配置”页面。 搜索配置项“dfs.namenode.fs-limits.max-directory-items”。 表1 参数说明 参数名称 描述 默认值 dfs.namenode.fs-limits.max-directory-items 定义目录中包含的最大条目数。 取值范围:1~6400000 1048576 设置单个HDFS目录下最大可容纳的文件数目。保存修改的配置。保存完成后请重新启动配置过期的服务或实例以使配置生效。 用户尽量将数据做好存储规划,可以按时间、业务类型等分类,不要单个目录下直属的文件过多,建议使用默认值,单个目录下约100万条。