云服务器内容精选
-
如何选择区域? 选择区域时,您需要考虑以下几个因素: 地理位置 一般情况下,建议就近选择靠近您或者您的目标用户的区域,这样可以减少网络时延,提高访问速度。不过,在基础设施、BGP网络品质、资源的操作与配置等方面,中国大陆各个区域间区别不大,如果您或者您的目标用户在中国大陆,可以不用考虑不同区域造成的网络时延问题。 曼谷等其他地区和国家提供国际带宽,主要面向非中国大陆地区的用户。如果您或者您的目标用户在中国大陆,使用这些区域会有较长的访问时延,不建议使用。 云服务之间的关系 如果多个云服务一起搭配使用,需要注意不同区域的云服务内网不互通。 例如 DataArts Studio (包括管理中心、 CDM 等组件)需要与 MRS 、OBS等服务互通时,如果DataArts Studio与其他云服务处于不同区域的情况下,需要通过公网或者专线打通网络;而在同区域情况下,同子网、同安全组的不同实例默认网络互通。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。
-
什么是区域、可用区? 我们用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属Region,通用Region指面向公共租户提供通用云服务的Region;专属Region指只承载同一类业务或只面向特定租户提供业务服务的专用Region。 可用区(AZ,Availability Zone)是同一区域内,电力和网络互相隔离的物理区域,一个可用区不受其他可用区故障的影响。一个区域内可以有多个可用区,不同可用区之间物理隔离,但内网互通,既保障了可用区的独立性,又提供了低价、低时延的网络连接。 图1阐明了区域和可用区之间的关系。 图1 区域和可用区 目前,华为云已在全球多个地域开放云服务,您可以根据需求选择适合自己的区域和可用区。更多信息请参见华为云全球站点。
-
如何选择可用区? DataArts Studio实例中的数据集成CDM集群所在可用区。DataArts Studio实例通过数据集成CDM集群与其他服务实现网络互通。 第一次购买DataArts Studio实例或增量包时,可用区无要求。再次购买DataArts Studio实例或增量包时,是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。
-
什么是 数据湖 ? 在企业内部,数据是一类重要资产已经成为了共识。随着企业的持续发展,数据不断堆积,企业希望把生产经营中的所有相关数据都完整保存下来,进行有效管理与集中治理,挖掘和探索数据价值。 数据湖就是在这种背景下产生的。数据湖是一个集中存储各类结构化和非结构化数据的大型 数据仓库 ,它可以存储来自多个数据源、多种数据类型的原始数据,数据无需经过结构化处理,就可以进行存取、处理、分析和传输。数据湖能帮助企业快速完成异构数据源的联邦分析、挖掘和探索数据价值。 数据湖的本质,是由“数据存储架构+数据处理工具”组成的解决方案。 数据存储架构:要有足够的扩展性和可靠性,可以存储海量的任意类型的数据,包括结构化、半结构化和非结构化数据。 数据处理工具,则分为两大类: 第一类工具,聚焦如何把数据“搬到”湖里。包括定义数据源、制定数据同步策略、移动数据、编制数据目录等。 第二类工具,关注如何对湖中的数据进行分析、挖掘、利用。数据湖需要具备完善的数据管理能力、多样化的数据分析能力、全面的数据生命周期管理能力、安全的数据获取和数据发布能力。如果没有这些 数据治理 工具,元数据缺失,湖里的数据质量就没法保障,最终会由数据湖变质为数据沼泽。 随着大数据和AI的发展,数据湖中数据的价值逐渐水涨船高,价值被重新定义。数据湖能给企业带来多种能力,例如实现数据的集中式管理,帮助企业构建更多优化后的运营模型,也能为企业提供其他能力,如预测分析、推荐模型等,这些模型能刺激企业能力的后续增长。 对于数据仓库与数据湖的不同之处,可以类比为仓库和湖泊的区别:仓库存储着来自特定来源的货物;而湖泊的水来自河流、溪流和其他来源,并且是原始数据。 表2 数据湖与数据仓库的对比 维度 数据湖 数据仓库 应用场景 可以探索性分析所有类型的数据,包括机器学习、数据发现、特征分析、预测等 通过历史的结构化数据进行数据分析 使用成本 起步成本低,后期成本较高 起步成本高,后期成本较低 数据质量 包含大量原始数据,使用前需要清洗和标准化处理 质量高,可作为事实依据 适用对象 数据科学家、数据开发人员为主 业务分析师为主
-
华为 智能数据湖 方案 华为数据使能服务DAYU,为大型政企客户量身定制跨越孤立系统、感知业务的数据资源智能管理解决方案,实现全域数据入湖,帮助政企客户从多角度、多层次、多粒度挖掘数据价值,实现数据驱动的数字化转型。 DAYU的核心主要是华为智能数据湖 FusionInsight ,包含数据库、数据仓库、数据湖等各计算引擎和 数据治理中心 DataArts Studio平台,提供了数据使能的全套能力,支持数据的采集、汇聚、计算、资产管理、数据开放服务的全生命周期管理。 华为FusionInsight解决方案,对应的各服务如下: 数据库: 关系型数据库包括:云数据库RDS、云数据库 TaurusDB、云数据库 GaussDB 、云数据库 PostgreSQL、云数据库 SQL Server等。 非关系型数据库包括:文档数据库服务DDS、云数据库 GeminiDB(兼容Influx、Redis、Mongo以及Cassandra多种协议)等。 数据仓库:数据仓库服务DWS。 数据湖:云原生大数据MRS、 数据湖探索 DLI等。 数据治理平台:数据治理中心DataArts Studio。
-
什么是数据仓库? 随着数据库的大规模应用,使信息行业的数据爆炸式的增长。为了研究数据之间的关系,挖掘数据隐藏的价值,人们越来越多的需要使用联机分析处理OLAP(On-Line Analytical Processing)进行数据分析,探究一些深层次的关系和信息。但是不同的数据库之间很难做到数据共享,数据之间的集成与分析也存在非常大的挑战。 为解决企业的数据集成与分析问题,数据仓库之父比尔·恩门于1990年提出数据仓库(Data Warehouse)。数据仓库主要功能是将OLTP经年累月所累积的大量数据,通过数据仓库特有的数据储存架构进行OLAP,最终帮助决策者能快速有效地从大量数据中,分析出有价值的信息,提供决策支持。自从数据仓库出现之后,信息产业就开始从以关系型数据库为基础的运营式系统慢慢向决策支持系统发展。 数据仓库相比数据库,主要有以下两个特点: 数据仓库是面向主题集成的。数据仓库是为了支撑各种业务而建立的,数据来自于分散的操作型数据。因此需要将所需数据从多个异构的数据源中抽取出来,进行加工与集成,按照主题进行重组,最终进入数据仓库。 数据仓库主要用于支撑企业决策分析,所涉及的数据操作主要是数据查询。因此数据仓库通过表结构优化、存储方式优化等方式提高查询速度、降低开销。 表1 数据仓库与数据库的对比 维度 数据仓库 数据库 应用场景 OLAP OLTP 数据来源 多数据源 单数据源 数据标准化 非标准化Schema 高度标准化的静态Schema 数据读取优势 针对读操作进行优化 针对写操作进行优化
-
什么是数据库? 数据库是“按照数据结构来组织、存储和管理数据的仓库”。 广义上的数据库,在20世纪60年代已经在计算机中应用了。但这个阶段的数据库结构主要是层次或网状的,且数据和程序之间具备非常强的依赖性,应用较为有限。 现在通常所说的数据库指的是关系型数据库。关系数据库是指采用了关系模型来组织数据的数据库,其以行和列的形式存储数据,具有结构化程度高,独立性强,冗余度低等优点。1970年关系型数据库的诞生,真正彻底把软件中的数据和程序分开来,成为主流计算机系统不可或缺的组成部分。关系型数据库已经成为目前数据库产品中最重要的一员,几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。 关系型数据库主要用于联机事务处理OLTP(On-Line Transaction Processing),主要进行基本的、日常的事务处理,例如银行交易等场景。
-
可能原因 DataArts Studio基于DAYU系统角色+工作空间角色实现授权的能力。为使 IAM 用户权限正常,IAM用户所在的用户组需要在IAM控制台中被授予DAYU User或DAYU Administrator的系统角色,另外也必须确保DAYU User角色的IAM用户已在对应的DataArts Studio工作空间中被设置为对应的工作空间角色。 如果您只给用户配置了DAYU User系统角色,未配置工作空间角色,则会出现无法查看工作空间的报错。