AI开发平台MODELARTS-pipeline代码适配:运行pipeline代码
时间:2025-04-09 09:16:13
运行pipeline代码
pipeline代码如下:
# mslite_pipeline.py import os import requests import torch import numpy as np from PIL import Image from io import BytesIO from pipeline_onnx_stable_diffusion_img2img_mslite import OnnxStableDiffusionImg2ImgPipeline def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True setup_seed(0) # 指定mindir和onnx模型路径。 mindir_dir = "/home_host/work/static_shape_convert/mindir_models" onnx_model_path = "/home_host/work/runwayml/onnx_models" os.environ['DEVICE_ID'] = "0" os.environ['TEXT_ENCODER_PATH'] = f"{mindir_dir}/text_encoder.mindir" os.environ['VAE_ENCODER_PATH'] = f"{mindir_dir}/vae_encoder.mindir" os.environ['UNET_PATH'] = f"{mindir_dir}/unet_graph.mindir" os.environ['VAE_DECODER_PATH'] = f"{mindir_dir}/vae_decoder.mindir" os.environ['SAFETY_CHECKER_PATH'] = f"{mindir_dir}/safety_checker.mindir" pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(onnx_model_path, torch_dtype=torch.float32).to("cpu") url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url, verify=False) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) prompt = "A fantasy landscape, trending on artstation" images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images images[0].save("fantasy_landscape_npu.png")
在运行pipeline时,默认的加速卡为0号卡,当机器有多人使用时,可能存在资源占用而无法正常运行的情况,可以通过环境变量指定加速卡ID,如指定5号卡进行执行。
# mslite_pipeline.py … os.environ['DEVICE_ID'] = "5" …
最后执行python脚本进行推理:
# shell python mslite_pipeline.py
图2 执行推理脚本

图3 MindSpore Lite pipeline输出的结果图片

support.huaweicloud.com/bestpractice-modelarts/modelarts_10_2005.html