MapReduce服务 MRS-数据序列化:操作步骤
操作步骤
Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用JavaSerializer,通过配置让KryoSerializer作为数据序列化器来提升序列化性能。
在开发应用程序时,添加如下代码来使用KryoSerializer作为数据序列化器。
- 实现类注册器并手动注册类。
package com.etl.common;import com.esotericsoftware.kryo.Kryo;import org.apache.spark.serializer.KryoRegistrator; public class DemoRegistrator implements KryoRegistrator{ @Override public void registerClasses(Kryo kryo) { //以下为示例类,请注册自定义的类 kryo.register(AggrateKey.class); kryo.register(AggrateValue.class); }}
您可以在Spark客户端对spark.kryo.registrationRequired参数进行配置,设置是否需要Kryo注册序列化。
当参数设置为true时,如果工程中存在未被序列化的类,则会抛出异常。如果设置为false(默认值),Kryo会自动将未注册的类名写到对应的对象中。此操作会对系统性能造成影响。设置为true时,用户需手动注册类,针对未序列化的类,系统不会自动写入类名,而是抛出异常,相对比false,其性能较好。
- 配置KryoSerializer作为数据序列化器和类注册器。
val conf = new SparkConf()conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").set("spark.kryo.registrator", "com.etl.common.DemoRegistrator")