盘古大模型 PANGULARGEMODELS-盘古NLP大模型:盘古NLP大模型规格
盘古NLP大模型规格
盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。
ModelArts Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。
模型支持区域 |
模型名称 |
可处理最大上下文长度 |
可处理最大输出长度 |
说明 |
---|---|---|---|---|
西南-贵阳一 |
Pangu-NLP-N1-32K-3.1.34 |
32K |
4K |
2024年11月发布的版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署,4K支持256并发,32K支持256并发。 |
Pangu-NLP-N1-32K-3.2.36 |
32K |
4K |
2025年1月发布的版本,支持32K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署,4K支持256并发,32K支持256并发。 |
|
Pangu-NLP-N1-128K-3.1.34 |
128K |
4K |
2024年11月发布的版本,仅支持128K序列长度推理,4个推理单元2并发。 |
|
Pangu-NLP-N1-128K-3.2.36 |
128K |
4K |
2025年1月发布的版本,仅支持128K序列长度推理,4个推理单元8并发。 |
|
Pangu-NLP-N2-4K-3.2.35 |
4K |
4K |
2025年1月发布的版本,支持4K序列长度训练,4K序列长度推理。全量微调、RFT微调32个训练单元起训,LoRA微调8个训练单元起训,支持混合部署和分离部署,4个推理单元即可部署,支持192并发。此模型版本差异化支持RFT训练、分离部署、边缘部署特性。 |
|
Pangu-NLP-N2-8K-3.1.39 |
8K |
4K |
2025年3月发布的版本,支持8K序列长度训练,8K序列长度推理。预训练、全量微调、DPO训练支持32个训练单元起训,LoRA微调支持8个训练单元起训,4个推理单元即可部署,支持192并发。 |
|
Pangu-NLP-N2-32K-3.1.35 |
32K |
4K |
2025年1月发布的版本,支持32K序列长度训练,32K序列长度推理。全量微调32个训练单元起训,LoRA微调8个训练单元起训,支持混合部署和分离部署,4个推理单元即可部署,支持128并发。此模型版本差异化支持分离部署、边缘部署特性。 |
|
Pangu-NLP-N2-128K-3.1.35 |
128K |
4K |
2024年12月发布的版本,仅支持128K序列长度推理部署,8个推理单元64并发。 |
|
Pangu-NLP-N2-256K-3.1.35 |
256K |
4K |
2024年12月发布的版本,仅支持256K序列长度推理部署,8个推理单元64并发。 |
|
Pangu-NLP-N2-Reasoner-32K-3.0.0.1 |
32K |
4K |
2025年3月发布的版本,仅支持32K序列长度推理部署,4个推理单元128并发。 |
|
Pangu-NLP-N2-Reasoner-128K-3.0.1.1 |
128K |
4K |
2025年5月发布的版本,仅支持128K序列长度推理部署,4个推理单元384并发。 |
|
Pangu-NLP-N4-4K-3.2.36 |
4K |
4K |
2025年3月发布的版本,支持4K序列长度训练,4K序列长度推理。预训练、全量微调、DPO训练64个训练单元起训,LoRA微调8个训练单元起训,8个推理单元即可部署,支持128并发。 |
|
Pangu-NLP-N4-4K-2.5.32 |
4K |
4K |
2024年11月发布的版本,支持4K序列长度训练,4K序列长度推理。全量微调64个训练单元起训,LoRA微调32个训练单元起训,8个推理单元即可部署,支持64并发。此模型版本差异化支持预训练、INT8/INT4量化特性。 |
|
Pangu-NLP-N4-4K-2.5.35 |
4K |
4K |
2025年1月发布的版本,支持4K序列长度训练,4K序列长度推理。全量微调64个训练单元起训,LoRA微调32个训练单元起训,8个推理单元即可部署,支持128并发。此模型版本差异化支持预训练、INT8/INT4量化特性。 |
|
Pangu-NLP-N4-32K-2.5.32 |
32K |
4K |
2024年11月发布的版本,仅支持32K序列长度推理部署,8个推理单元64并发。 |
|
Pangu-NLP-N4-32K-2.5.35 |
32K |
4K |
2025年1月发布的版本,仅支持32K序列长度推理部署,8个推理单元128并发。 |
|
Pangu-NLP-N4-Reasoner-32K-3.0.1.1 |
32K |
4K |
2025年5月发布的版本,仅支持32K序列长度推理部署,4个推理单元104并发。 |
|
Pangu-RAG-N1-32K-4.3.2 |
32K |
- |
2025年4月份发布的版本,支持32K序列长度推理,1个推理单元可部署,最高支持1QPS。该模型是基于盘古NLP大模型微调得到的RAG场景模型,提供对话问答能力。 |