华为云计算 云知识 Flink原理和特性

Flink原理和特性

Flink原理:

  • Stream&Transformation&Operator

用户实现的Flink程序是由Stream和Transformation这两个基本构建块组成。

1.Stream是一个中间结果数据,而Transformation是一个操作,它对一个或多个输入Stream进行计算处理,输出一个或多个结果Stream。

2.当一个Flink程序被执行的时候,它会被映射为Streaming Dataflow。一个Streaming Dataflow是由一组Stream和Transformation Operator组成,它类似于一个DAG图,在启动的时候从一个或多个Source Operator开始,结束于一个或多个Sink Operator。

图1为一个由Flink程序映射为Streaming Dataflow的示意图。

图1 Flink DataStream示例

Flink原理和特性1

图1中“FlinkKafkaConsumer”是一个Source Operator,Map、KeyBy、TimeWindow、Apply是Transformation Operator,RollingSink是一个Sink Operator。

  • Pipeline Dataflow

在Flink中,程序是并行和分布式的方式运行。一个Stream可以被分成多个Stream分区(Stream Partitions),一个Operator可以被分成多个Operator Subtask。

Flink内部有一个优化的功能,根据上下游算子的紧密程度来进行优化。

紧密度低的算子则不能进行优化,而是将每一个Operator Subtask放在不同的线程中独立执行。一个Operator的并行度,等于Operator Subtask的个数,一个Stream的并行度(分区总数)等于生成它的Operator的并行度,如图4所示。

图2 Operator

Flink原理和特性2

紧密度高的算子可以进行优化,优化后可以将多个Operator Subtask串起来组成一个Operator Chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行,如图5所示。

图3 Operator chain

Flink原理和特性3

图3中上半部分表示的是将Source和map两个紧密度高的算子优化后串成一个Operator Chain,实际上一个Operator Chain就是一个大的Operator的概念。图中的Operator Chain表示一个Operator,keyBy表示一个Operator,Sink表示一个Operator,它们通过Stream连接,而每个Operator在运行时对应一个Task,也就是说图中的上半部分有3个Operator对应的是3个Task。

图3中下半部分是上半部分的一个并行版本,对每一个Task都并行化为多个Subtask,这里只是演示了2个并行度,sink算子是1个并行度。

Flink关键特性:

  • 流式处理

高吞吐、高性能、低时延的实时流处理引擎,能够提供ms级时延处理能力。

  • 丰富的状态管理

流处理应用需要在一定时间内存储所接收到的事件或中间结果,以供后续某个时间点访问并进行后续处理。Flink提供了丰富的状态管理相关的特性支持,其中包括

多种基础状态类型:Flink提供了多种不同数据结构的状态支持,如ValueState、ListState、MapState等。用户可以基于业务模型选择最高效、合适状态类型。

丰富的State Backend:State Backend负责管理应用程序的状态,并根据需要进行checkpoint。Flink提供了不同State Backend,State可以存储在内存上或RocksDB等上,并支持异步以及增量的checkpoint机制。

精确一次语义:Flink的Checkpoint和故障恢复能力保证了任务在故障发生前后的应用状态一致性,为某些特定的存储支持了事务型输出的功能,及时在发生故障的情况下,也能够保证精确一次的输出。

  • 丰富的时间语义支持

时间是流处理应用的重要组成部分,对于实时流处理应用来说,基于时间语义的窗口聚合、检测、匹配等运算是非常常见的。Flink提供了丰富的时间语义支持。

Event-time:使用事件本身自带的时间戳进行计算,使乱序到达或延迟到达的事件处理变得更加简单。

Watermark支持:Flink引入Watermark概念,用以衡量事件时间的发展。Watermark也为平衡处理时延和数据完整性提供了灵活的保障。当处理带有Watermark的事件流时,在计算完成之后仍然有相关数据到达时,Flink提供了多种处理选项,如将数据重定向(side output)或更新之前完成的计算结果。

Processing-time和Ingestion-time支持。

高度灵活的流式窗口支持:Flink能够支持时间窗口、计数窗口、会话窗口,以及数据驱动的自定义窗口,可以通过灵活的触发条件定制,实现复杂的流式计算模式。

  • 容错机制

分布式系统,单个task或节点的崩溃或故障,往往会导致整个任务的失败。Flink提供了任务级别的容错机制,保证任务在异常发生时不会丢失用户数据,并且能够自动恢复。

Checkpoint:Flink基于Checkpoint实现容错,用户可以自定义对整个任务的Checkpoint策略,当任务出现失败时,可以将任务恢复到最近一次Checkpoint的状态,从数据源重发快照之后的数据。

Savepoint:一个Savepoint就是应用状态的一致性快照,Savepoint与Checkpoint机制相似,但Savepoint需要手动触发,Savepoint保证了任务在升级或迁移时,不丢失掉当前流应用的状态信息,便于任何时间点的任务暂停和恢复。

  • Flink SQL

Table API和SQL借助了Apache Calcite来进行查询的解析,校验以及优化,可以与DataStream和DataSet API无缝集成,并支持用户自定义的标量函数,聚合函数以及表值函数。简化数据分析、ETL等应用的定义。

  • CEP in SQL

Flink允许用户在SQL中表示CEP(Complex Event Processing)查询结果以用于模式匹配,并在Flink上对事件流进行评估。

CEP SQL通过MATCH_RECOGNIZE的SQL语法实现。MATCH_RECOGNIZE子句自Oracle Database 12c起由Oracle SQL支持,用于在SQL中表示事件模式匹配。


上一篇:短信平台发短信怎么操作?短信平台有什么缺点? 下一篇:Docker镜像是什么

数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

按需付费,CU单价 ¥0.35/小时

进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           
 

使用前说明||https://support.huaweicloud.com/sdkreference-dli/dli_04_0124.html,表相关||https://support.huaweicloud.com/sdkreference-dli/dli_04_0038.html,资源相关||https://support.huaweicloud.com/sdkreference-dli/dli_04_0053.html,队列相关||https://support.huaweicloud.com/sdkreference-dli/dli_04_0028.html,作业相关||https://support.huaweicloud.com/sdkreference-dli/dli_04_0042.html

https://www.huaweicloud.com/product/dli.html