法律ai大模型
围绕工业、城市、政务等重点场景打造以盘古CV大模型为中心的通用视觉能力,助力企业实现CV模型“工业化”生产,并打通模型监控-数据回传-持续学习-自动评估-持续更新的AI全链路闭环。在工业场景已有多个应用。
体验 政企知识检索 智能创意营销 行业API助手 行业研发助手 政企会议助手 文档与学习成长 盘古大模型 盘古大模型 什么是盘古大模型 盘古NLP大模型能力与规格 盘古大模型快速入门 如何调用盘古大模型API 查看全部 AI Gallery百模千态社区 AI Gallery百模千态社区
全链路专业服务,让大模型从可用到好用 · 6大阶段30+专业服务,覆盖大模型建设全流程,加速政企落地大模型 · 创新运营服务模式,实现全场景模型经验沉淀、全流程运营赋能产业,快速孵化大模型场景化应用 大模型混合云十大创新技术 大模型混合云十大创新技术 了解详情 十大创新技术 加速构建企业专属大模型
文档与学习成长 盘古大模型 盘古大模型 什么是盘古大模型 盘古预测大模型能力与规格 盘古大模型快速入门 如何调用盘古大模型API 查看全部 AI Gallery百模千态社区 AI Gallery百模千态社区 优质昇腾云AI模型专区 几行代码自由部署AI应用 丰富多样的AI训练数据集 场景化AI案例,助力AI赋能千行百业
盘古大模型 PanguLargeModels 盘古大模型 PanguLargeModels 盘古大模型是面向B端行业的大模型,包含L0中5类基础大模型、L1行业大模型及L2场景模型三层架构 盘古大模型是面向B端行业的大模型,包含L0中5类基础大模型、L1行业大模型及L2场景模型三层架构
广汽借助华为云盘古多模态大模型,打造业界首个支持点云生成的大模型,为其端到端仿真高效迭代提供强有力支撑。 文档与学习成长 盘古大模型 盘古大模型 什么是盘古大模型 盘古多模态大模型能力与规格 用户指南 如何调用盘古大模型API 查看全部 AI Gallery百模千态社区 AI Gallery百模千态社区
提供高精度的全球模型,无需定制和训练,直接订阅即可推理 多种部署形态 支持公有云、混合云、边缘多种形态,满足不同需求 文档与学习成长 盘古大模型 盘古大模型 什么是盘古大模型 盘古科学计算大模型能力与规格 盘古大模型用户指南 如何调用盘古大模型API 查看全部 AI Gallery百模千态社区
大模型混合云TOP N 场景 大模型混合云TOP N 场景 1对1咨询 了解华为云Stack 大模型行业场景落地三要素 大模型行业场景落地三要素 场景是大模型行业落地的关键所在,而在场景落地过程中,数据、经验和生态是核心要素,数据的数量和质量决定模型效果上限;经验就像“名师指导”
大模型安全护栏 ModelArts Guard 大模型安全护栏 ModelArts Guard 大模型安全护栏(ModelArts Guard),做配套大模型的内容安全防线 大模型安全护栏(ModelArts Guard),做配套大模型的安全防线,开放兼容,适用盘古大模型和三方大模型
多语种内容审核,平台全面保护 一站式大模型开发平台 一站式大模型开发平台 ModelArts Studio大模型开发平台是集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计,旨在为开发者提供简单、高效的大模型开发和部署方式 为什么选择大模型开发平台ModelArts
《互联网信息服务算法推荐管理规定》明确,具有舆论属性或者社会动员能力的算法推荐服务提供者应当在提供服务之日起十个工作日内通过互联网信息服务算法备案系统填报服务提供者的名称、服务形式、应用领域、算法类型、算法自评估报告、拟公示内容等信息 方便
湘江鲲鹏目前在人工智能大模型领域拥有算力、数据、算法三大关键要素的经验积累,构建了大模型三个方面的差异化竞争力,盘古大模型AI专业服务覆盖从前期咨询、规划设计,到数据工程、模型训练,再到应用工程及模型运维的完整流程。基于华为盘古提供的AI专业服务包,致力于为企业提供一站式人工智能解决方案
angChain等流行的大模型开发框架,构建企业级AI应用;团队拥有成熟的软件工程技术和管理能力。6. 大模型使用的技术支持,用户使用大模型平台,解答用户使用过程遇到的问题;大模型与应用对接集成,以及进行日常巡检、故障处理、模型升级等服务。4. 工业数据模型(CAD模型、CAE模
太杉天尊大模型AIGC场景解决方案是以AI场景解决方案为核心的全栈Maas综合方案,助力政企客户灵活部署(可公有可私有部署)。具备自研的行业模型能力,主要用于政府/公安/教育等行业的数据处理、文本处理以及多模态处理等多场景。太杉天尊大模型AIGC场景解决方案,是一款专为满足政府企
公司集成了世界领先的底层大模型,具备打通跨模型和工具链的平台,提供从需求分析、数据收集、模型设计、训练优化、评估、系统集成、用户界面设计、部署维护、合规性检查、技术支持、性能监控、扩展性设计、定制服务到持续研发一站式AI大模型定制研发服务。光启慧语是一家围绕大模型全栈开展技术研发和产
数据质量。4. 模型训练:设计调优方案,实施模型训练,并进行模型评测。熟悉盘古大模型工作流和云服务操作,确保模型效果优化。5. 应用工程:提供基于大模型能力的Agent开发和应用对接服务。具备良好的软件开发和沟通能力,实现大模型与应用的无缝对接。6. 模型运维: 提供技
. 模型更新后,将新模型部署至相应环境。 十一、模型评测1. 设计模型评测方案,对大模型各类指标进行评测。2. 能够按评测标准对大模型各项能力进行打分,输出大模型评测报告。 十二、Agent开发1. 基于场景,设计并开发Agent工具。2. 基于langchain等大模型框架,完
天尊大模型AIGC场景解决方案配套服务是太杉AIGC解决方案的人工服务,是以AI应用解决方案为核心的全栈Maas综合方案,助力政企客户灵活部署(可公有可私有部署)。主要用于政府/公安/教育等行业的数据处理、文本处理以及多模态处理等多场景。天尊大模型AIGC场景解决方案配套服务是太
出门问问大模型“序列猴子”是一款具备多模态生成能力的大语言模型,模型以语言为核心的能力体系涵盖“知识、对话、数学、逻辑、推理、规划”六个维度,能够同时支持文字生成、图片生成、3D内容生成、语言生成和语音识别等不同任务。出门问问大模型“序列猴子”是一款具备多模态生成能力的大语言模型,模
华为云盘古大模型 华为云盘古大模型 AI for Industries 大模型重塑千行百业 AI for Industries 大模型重塑千行百业 盘古大模型致力于深耕行业,打造金融、政务、制造、矿山、气象、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合
ModelArts支持本地准备模型包,编写模型配置文件和模型推理代码,将准备好的模型包上传至对象存储服务OBS,从OBS导入模型创建为AI应用。 制作模型包,则需要符合一定的模型包规范。模型包里面必需包含“model”文件夹,“model”文件夹下面放置模型文件,模型配置文件,模型推理代码文件。
ModelArts模型训练 ModelArts模型训练简介 ModelArts模型训练,俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。
端口。 高斯数据库模型-应用场景 金融核心交易 ERP/CRM 政企OA/办公 金融核心交易 金融核心交易 适用于各类银行核心交易系统分布式改造,数据库的原生分布式能力可以极大的降低改造和迁移工作量。两地三中心等极致高可用能力,可以为核心业务保驾护航。 优势 大容量高扩展:支持T
创建用户并授权使用云速建站 更多详情 云性能测试服务 CPTS 创建测试任务 创建测试任务 应用魔方 AppCube 告警监控大屏应用开发 告警监控大屏应用开发 实时音视频 RTC 服务端API参考 服务端API参考 更多详情 数据仓库服务 GaussDB(DWS) 分析正在执行的SQL
000.00元/年 免费AI客服电话-智能AI客户联络中心-AI智能电话机器特征 免费AI客服电话-智能AI客户联络中心-AI智能电话机器特征 免费AI客服电话-内置ASR引擎 支持ASR,NLP,NLU,TTS等技术数据整合识别、响应飞速提升 免费AI客服电话-多轮会话 领先的
.email域名注册 什么是.email域名注册? 域名注册(Domain Registration)是用户付费获取Internet上某一域名一段时间使用权的过程。华为云域名注册服务提供域名的注册、购买、实名认证以及管理功能。 华为云的域名注册服务与新网合作,因此通过华为云注册的
恶意竞争或者核心资产泄露。 防页面篡改 政企事业单位公信力高、影响力大,一旦遭遇网页恶意篡改,网站上内容可能会涉及侵权或者被植入违法内容,对政企事业单位的形象造成严重的打击和伤害。 政企事业单位公信力高、影响力大,一旦遭遇网页恶意篡改,网站上内容可能会涉及侵权或者被植入违法内容,
这些DeepSeek模型在多项能力上与OpenAI的o1-mini相当,为开发者提供了强大的AI能力。 在MaaS平台上,DeepSeek-R1蒸馏模型已经部署上线,开发者可以通过在线体验或API调用来使用这些模型。为了帮助开发者快速验证和开发创新的AI应用,平台还提供了200
法律ai大模型
机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景, ModelArts 提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。
选择算法的实现方式
ModelArts提供如下方式实现模型训练前的算法准备。
- 使用订阅算法
- 使用预置框架
如果您需要使用自己开发的算法,可以选择使用ModelArts预置框架。ModelArts支持了大多数主流的AI引擎,详细请参见预置训练引擎。这些预置引擎预加载了一些额外的python包,例如numpy等;也支持您通过在代码目录中使用“requirements.txt”文件安装依赖包。使用预置框架创建训练作业请参考开发用于预置框架训练的代码指导。
- 使用预置框架 + 自定义 镜像 :
如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的算法;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,此时您可以使用预置框架 + 自定义镜像的功能,即选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。
此功能与直接基于预置框架创建算法的区别仅在于,镜像是由用户自行选择的。用户可以基于预置框架制作自定义镜像。基于预置框架制作自定义镜像代码可参考使用预置镜像制作自定义镜像用于训练模型章节。
- 完全自定义镜像:
订阅算法和预置框架涵盖了大部分的训练场景。针对特殊场景,ModelArts支持用户构建自定义镜像用于模型训练。用户遵循ModelArts镜像的规范要求制作镜像,选择自己的镜像,并且通过指定代码目录(可选)和启动命令的方式来创建的训练作业。
自定义镜像需上传至 容器镜像服务 ( SWR ),才能用于ModelArts上训练,请参考使用自定义镜像训练模型。由于自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置引擎无法满足需求,否则不推荐使用。
当使用完全自定义镜像创建训练作业时,“启动命令”必须在“/home/ma-user”目录下执行,否则训练作业可能会运行异常。
创建算法
您在本地或使用其他工具开发的算法,支持上传至ModelArts中统一管理。
- 创建算法的准备工作。
- 完成数据准备:已在ModelArts中创建可用的数据集,或者您已将用于训练的数据集上传至 OBS 目录。
- 准备训练脚本,并上传至OBS目录。训练脚本开发指导参见开发用于预置框架训练的代码或开发用于自定义镜像训练的代码。
- 在OBS创建至少1个空的文件夹,用于存储训练输出的内容。
- 确保您使用的OBS目录与ModelArts在同一区域。
- 进入算法创建页面。
- 登录ModelArts管理控制台,单击左侧菜单栏的“资产管理 > 算法管理”。
- 在“我的算法”管理页面,单击“创建”,进入“创建算法”页面。填写算法的基本信息,包含“名称”和“描述”。
- 设置算法启动方式,有以下三种方式可以选择。
- 设置算法启动方式(预置框架)
图1 使用预置框架创建算法需根据实际算法代码情况设置“代码目录”和“启动文件”。选择的预置框架和编写算法代码时选择的框架必须一致。例如编写算法代码使用的是TensorFlow,则在创建算法时也要选择TensorFlow。
表1 使用预置框架创建算法 参数
说明
“启动方式”
选择“预置框架”。
选择算法使用的预置框架引擎和引擎版本。
“代码目录”
算法代码存储的OBS路径。训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。
请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。
训练作业创建完成后,ModelArts会将代码目录及其子目录下载至训练后台容器中。
例如:OBS路径“obs://obs-bucket/training-test/demo-code”作为代码目录,OBS路径下的内容会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,demo-code为OBS存放代码路径的最后一级目录,用户可以根据实际修改。
说明:- 编程语言不限。
- 文件数(含文件、文件夹数量)小于或等于1000个。
- 文件总大小小于或等于5GB。
“启动文件”
必须为“代码目录”下的文件,且以“.py”结尾,即ModelArts目前只支持使用Python语言编写的启动文件。
代码目录路径中的启动文件为训练启动的入口。
- 设置算法启动方式(预置框架+自定义)
图2 使用预置框架+自定义镜像创建算法需根据实际算法代码情况设置“镜像”、“代码目录”和“启动文件”。选择的预置框架和编写算法代码时选择的框架必须一致。例如编写算法代码使用的是TensorFlow,则在创建算法时也要选择TensorFlow。
表2 使用预置框架+自定义镜像创建算法 参数
说明
“启动方式”
选择“预置框架”。
预置框架的引擎版本选择“自定义”。
“镜像”
用户制作的镜像需要提前上传到SWR,才可以在这里选择。制作镜像的方式请参见训练作业的自定义镜像制作流程。
“代码目录”
算法代码存储的OBS路径。训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。
请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。
训练作业启动时,ModelArts会将训练代码目录及其子目录下载至训练后台容器中。
例如:OBS路径“obs://obs-bucket/training-test/demo-code”作为代码目录,OBS路径下的内容会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,demo-code为OBS存放代码路径的最后一级目录,用户可以根据实际修改。
说明:- 训练代码编程语言不限。训练启动文件必须为Python语言。
- 文件数(含文件、文件夹数量)小于或等于1000个。
- 文件总大小要小于或等于5GB。
- 文件深度要小于或等于32
“启动文件”
必须为“代码目录”下的文件,且以“.py”结尾,即ModelArts目前只支持使用Python语言编写的启动文件。
代码目录路径中的启动文件为训练启动的入口。
选择预置框架+自定义时,该功能的后台行为与直接基于预置框架运行训练作业相同,例如:- 系统将会自动注入一系列环境变量。
PATH=${MA_HOME}/anaconda/bin:${PATH} LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH} PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}
- 您选择的启动文件将会被系统自动以python命令直接启动,因此请确保镜像中的Python命令为您预期的Python环境。注意到系统自动注入的PATH环境变量,您可以参考下述命令确认训练作业最终使用的Python版本:
export MA_HOME=/home/ma-user; docker run --rm {image} ${MA_HOME}/anaconda/bin/python -V docker run --rm {image} $(which python) -V
- 系统将会自动添加预置框架关联的超参。
- 设置算法启动方式(自定义)
图3 完全使用自定义镜像创建算法
表3 完全使用自定义镜像创建算法 参数
说明
“启动方式”
选择“自定义”。
“镜像”
用户制作的镜像需要提前上传到SWR,才可以在这里选择。制作镜像的方式请参见训练作业的自定义镜像制作流程。
“代码目录”
算法代码存储的OBS路径。训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。如果自定义镜像中不含训练代码则需要配置该参数,如果自定义镜像中已包含训练代码则不需要配置。
请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。
训练作业启动时,ModelArts会将训练代码目录及其子目录下载至训练后台容器中。
例如:OBS路径“obs://obs-bucket/training-test/demo-code”作为代码目录,OBS路径下的内容会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,demo-code为OBS存放代码路径的最后一级目录,用户可以根据实际修改。
说明:- 训练代码编程语言不限。训练启动文件必须为Python语言。
- 文件数(含文件、文件夹数量)小于或等于1000个。
- 文件总大小要小于或等于5GB。
- 文件深度要小于或等于32
“启动命令”
必填,镜像的启动命令。
运行训练作业时,当“代码目录”下载完成后,“启动命令”会被自动执行。- 如果训练启动脚本用的是py文件,例如“train.py”,则启动命令如下所示。
python ${MA_JOB_DIR}/demo-code/train.py
- 如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。
bash ${MA_JOB_DIR}/demo-code/main.sh
启动命令支持使用“;”和“&&”拼接多条命令,命令中的“demo-code”为存放代码目录的最后一级OBS目录,以实际情况为准。
当存在输入管道、输出管道、或是超参的情况下,请保证启动命令的最后一条命令是运行训练脚本。
原因:系统会将输入管道、输出管道、以及超参添加到启动命令的末尾,如果最后一条命令不是运行训练脚本则会报错。
例如:启动命令的最后一条是python train.py,且存在--data_url超参,系统正常运行会执行python train.py --data_url=/input。但是当启动命令python train.py后面有其他命令时,如下所示:
python train.py pwd #反例,启动命令的最后一条命令不是运行训练脚本,而是pwd
此时,如果拼接了输入管道、输出管道、以及超参,系统运行实际执行的是python train.py pwd --data_url=/input,就会报错。
训练支持的自定义镜像使用说明请参考自定义镜像的启动命令规范。
- 设置算法启动方式(预置框架)
- 输入输出管道设置。
训练过程中,算法需要从OBS桶或者数据集中获取数据进行模型训练,训练产生的输出结果也需要存储至OBS桶中。用户的算法代码中需解析输入输出参数实现ModelArts后台与OBS的数据交互,用户可以参考准备模型训练代码完成适配ModelArts训练的代码开发。
- 输入配置
表4 输入配置 参数
参数说明
参数名称
根据实际代码中的输入数据参数定义此处的名称。此处设置的代码路径参数必须与算法代码中解析的训练输入数据参数保持一致,否则您的算法代码无法获取正确的输入数据。
例如,算法代码中使用argparse解析的data_url作为输入数据的参数,那么创建算法时就需要配置输入数据的参数名称为“data_url”。
描述
输入参数的说明,用户可以自定义描述。
获取方式
输入参数的获取方式,默认使用“超参”,也可以选择“环境变量”。
输入约束
开启后,用户可以根据实际情况限制数据输入来源。输入来源可以选择“数据存储位置”或者“ModelArts数据集”。
添加
用户可以根据实际算法添加多个输入数据来源。
- 输出配置
- 输入配置
- 定义超参。
创建算法时,ModelArts支持用户自定义超参,方便用户查阅或修改。定义超参后会体现在启动命令中,以命令行参数的形式传入您的启动文件中。
- 编辑超参。
为保证数据安全,请勿输入敏感信息,例如明文密码。
表6 编辑超参数 参数
说明
名称
填入超参名称。
超参名称支持64个以内字符,仅支持大小写字母、数字、下划线和中划线。
类型
填入超参的数据类型。支持String、Integer、Float和Boolean。
默认值
填入超参的默认值。创建训练作业时,默认使用该值进行训练。
约束
单击“约束”。在弹出对话框中,支持用户设置默认值的取值范围或者枚举值范围。
必须
选择是或否。
- 选择否,则在使用该算法创建训练作业时,支持在创建训练作业页面删除该超参。
- 选择是,则在使用该算法创建训练作业时,不支持在创建训练作业页面删除该超参。
描述
填入超参的描述说明。
超参描述支持大小写字母、中文、数字、空格、中划线、下划线、中英文逗号和中英文句号。
- 支持的策略。
ModelArts Standard支持用户使用自动化搜索功能。自动化搜索功能在零代码修改的前提下,自动找到最合适的超参,有助于提高模型精度和收敛速度。详细的参数配置请参考创建自动模型优化的训练作业。
自动搜索目前仅支持“tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64”和“pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64”镜像
- 添加训练约束。
- 资源类型:选择适用的资源类型,支持多选。
- 多卡训练:选择是否支持多卡训练。
- 分布式训练:选择是否支持分布式训练。
- 当创建算法的参数配置完成后,单击“提交”,返回算法管理列表。
运行环境预览
创建算法时,可以打开创建页面右下方的运行环境预览窗口,辅助您了解代码目录、启动文件、输入输出等数据配置在训练容器中的路径。
发布算法到AI gallery
发布算法:创建完成的算法,支持发布到AI Gallery,并分享给其他用户使用。
- 如果首次发布算法,则“发布方式”选择“创建新资产”,填写“资产标题”、选择发布区域等信息。
- 如果是为了更新已发布的算法版本,则“发布方式”选择“添加资产版本”,在“资产标题”下拉框中选择已有资产标题,填写“资产版本”。

如果是首次在AI Gallery发布资产则此处会出现勾选“我已阅读并同意《华为云AI Gallery百模千态社区服务声明》和《华为云AI Gallery服务协议》”选项,需要阅读并勾选同意才能正常发布资产。
提交资产发布申请后,AI Gallery侧会自动托管上架,可以前往AI Gallery查看资产上架情况。
删除算法

删除后,创建的算法资产会被删除,且无法恢复,请谨慎操作。
删除我的算法:在“资产管理 > 算法管理 > 我的算法”页面,“删除”运行结束的训练作业。您可以单击“操作”列的“删除”,在弹出的提示框中,输入DELETE,单击“确定”,删除对应的算法。
删除订阅算法:前往AI Gallery,在“我的资产 > 算法”中,单击我的订阅,对需要删除的算法单击“取消订阅”,在弹出的提示框中单击“确定”即可。
法律ai大模型常见问题
更多常见问题 >>-
盘古大模型致力于深耕行业,打造金融、政务、制造、矿山、气象、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合,重塑千行百业,成为各组织、企业、个人的专家助手。
-
模型转换,即将开源框架的网络模型(如Caffe、TensorFlow等),通过ATC(Ascend Tensor Compiler)模型转换工具,将其转换成昇腾AI处理器支持的离线模型。
-
本次Serverless应用中心上线文生图应用,用户无需下载源代码、了解各种安装部署知识、安装复杂的依赖,通过华为云Serverless应用中心即可一键创建AI文生图应用,体验 “0” 构建门槛、“0” 资源闲置并具备极致弹性的Serverless AI绘图能力。
-
在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。本课程将简单介绍一下预训练的思想,几个代表性模型和它们之间的关系。
-
华为云Serverless技术极大的优化了AI应用开发过程,一键部署AI应用、提升开发团队工作效率。让AI团队可以更关注业务实现,而无需关注底层技术细节。
-
知识图谱(KG)和大语言模型(LLM)都是知识的表示形式。KG是符号化的知识库,具备一定推理能力,且结果可解释性较好。但存在构建成本高、泛化能力不足、更新难等不足。
更多相关专题
增值电信业务经营许可证:B1.B2-20200593 | 域名注册服务机构许可:黔D3-20230001 | 代理域名注册服务机构:新网、西数