云服务器内容精选

  • 现象描述 某局点测试过程中EXPLAIN ANALYZE后有如下情况: 从执行信息上比较明确的可以看出HashJoin是整个计划的性能瓶颈点,并且从HashJoin的执行时间信息[2657.406,93339.924](数值的具体含义请参见SQL执行计划详解),上可以看出HashJoin在不同的DN上存在严重的计算偏斜。 同时在Memory Information(如下图)中可以看出各个节点的内存资源消耗也存在极为严重的偏斜。
  • 优化分析 上述两个特征表明了此SQL语句存在极为严重的计算倾斜。进一步向HashJoin算子的下层分析发现Seq Scan on s_riskrate_setting也存在极为严重的计算倾斜[38.885,2940.983]。根据Scan的含义推测此计划性能问题的根源在于表s_riskrate_setting数据的分布倾斜。实际分析之后确实发现表s_riskrate_setting存在严重的数据倾斜。整改之后性能从94s提升为50s。
  • 案例环境准备 为了便于案例演示,需准备建表语句如下: --清理环境 DROP SCHEMA IF EXISTS dn_gather_test CASCADE; CREATE SCHEMA dn_gather_test; SET current_schema=dn_gather_test; --创建测试表 CREATE TABLE t1(a INT, b INT, c INT, d INT); CREATE TABLE t2(a INT, b INT, c INT, d INT); CREATE TABLE t3(a INT, b INT, c INT, d INT); CREATE TABLE t4(a INT, b INT, c INT, d INT);
  • 优化说明 通常优化器总会选择最优的执行计划,但是众所周知代价估算,尤其是中间结果集的代价估算一般会有比较大的偏差,这种比较大的偏差就可能会导致agg的计算方式出现比较大的偏差,这时候就需要通过best_agg_plan进行agg计算模型的干预。 一般来说,当agg汇聚的收敛度很小时,即结果集的个数在agg之后并没有明显变少时(经验上以5倍为临界点),选择redistribute+hashagg执行方式,否则选择hashagg+redistribute+hashagg执行方式。
  • 现象描述 in-clause/any-clause是常见的SQL语句约束条件,有时in或any后面的clause都是常量,类似于: 1 select count(1) from calc_empfyc_c1_result_tmp_t1 where ls_pid_cusr1 in (‘20120405’, ‘20130405’); 或者 1 select count(1) from calc_empfyc_c1_result_tmp_t1 where ls_pid_cusr1 in any(‘20120405’, ‘20130405’); 但是也有一些如下的特殊用法: 1 SELECT ls_pid_cusr1,COALESCE(max(round((current_date-bthdate)/365)),0)FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2WHERE t1.ls_pid_cusr1 = any(values(id),(id15))GROUP BY ls_pid_cusr1; 其中,id、id15为p10_md_tmp_t2中的两列,“t1.ls_pid_cusr1 = any(values(id),(id15))”等价于“t1.ls_pid_cusr1 = id or t1.ls_pid_cusr1 = id15”。 因此join-condition实质上是一个不等式,这种非等值的join操作必须使用nestloop连接,对应执行计划如下:
  • 优化说明 测试发现由于两表结果集过大,导致nestloop耗时过长,超过一小时未返回结果,因此性能优化的关键是消除nestloop,让join使用更高效的hashjoin。从语义等价的角度消除any-clause,SQL改写如下: 1 selectls_pid_cusr1,COALESCE(max(round(ym/365)),0)from( ( SELECT ls_pid_cusr1,(current_date-bthdate) as ym FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2 WHERE t1.ls_pid_cusr1 = t2.id and t1.ls_pid_cusr1 != t2.id15 ) union all ( SELECT ls_pid_cusr1,(current_date-bthdate) as ym FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2 WHERE t1.ls_pid_cusr1 = id15 ))GROUP BY ls_pid_cusr1; 优化后的SQL查询由两个等值join的子查询构成,而每个子查询都可以走更适合此场景的hashjoin。优化后的执行计划如下 优化后,从超过1个小时未返回结果优化到7s返回结果。
  • 优化说明 此优化的核心就是消除子查询。分析业务场景发现a.ca_address_sk不为null,那么从SQL语义出发,可以等价改写SQL为: 1 2 3 4 5 select count(*) from customer_address_001 a4, customer_address_001 a where a4.ca_address_sk = a.ca_address_sk group by a.ca_address_sk; 为了保证改写的等效性,在customer_address_001. ca_address_sk加了not null约束。
  • 现象描述 查询与销售部所有员工的信息: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 --建表 CREATE TABLE staffs (staff_id NUMBER(6) NOT NULL, first_name VARCHAR2(20), last_name VARCHAR2(25), employment_id VARCHAR2(10), section_id NUMBER(4), state_name VARCHAR2(10), city VARCHAR2(10)); CREATE TABLE sections(section_id NUMBER(4), place_id NUMBER(4), section_name VARCHAR2(20)); CREATE TABLE states(state_id NUMBER(4)); CREATE TABLE places(place_id NUMBER(4), state_id NUMBER(4)); --优化前查询 EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id; --优化后查询 CREATE INDEX loc_id_pk ON places(place_id); CREATE INDEX state_c_id_pk ON states(state_id); EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id;
  • 案例环境准备 为了便于规则的使用场景演示,需准备建表语句如下: --清理环境 DROP SCHEMA IF EXISTS rewrite_rule_guc_test CASCADE; CREATE SCHEMA rewrite_rule_guc_test; SET current_schema=rewrite_rule_guc_test; --创建测试表 CREATE TABLE t(c1 INT, c2 INT, c3 INT, c4 INT); CREATE TABLE t1(c1 INT, c2 INT, c3 INT, c4 INT); CREATE TABLE t2(c1 INT, c2 INT, c3 INT, c4 INT);
  • 案例环境准备 为了便于规则的使用场景演示,需准备建表语句如下: --清理环境 DROP SCHEMA IF EXISTS rewrite_rule_guc_test CASCADE; CREATE SCHEMA rewrite_rule_guc_test; SET current_schema=rewrite_rule_guc_test; --创建测试表 CREATE TABLE t(c1 INT, c2 INT, c3 INT, c4 INT); CREATE TABLE t1(c1 INT, c2 INT, c3 INT, c4 INT); CREATE TABLE t2(c1 INT, c2 INT, c3 INT, c4 INT);
  • 现象描述 1 2 3 4 select 1, (select count(*) from customer_address_001 a4 where a4.ca_address_sk = a.ca_address_sk) as GZ CS from customer_address_001 a; 此SQL性能较差,查看发现执行计划中存在SubPlan,引用SubPlan结果的算子可能需要反复的调用获取这个SubPlan的值,即SubPlan以下的结果要重复执行很多次。具体如下:
  • 优化说明 此优化的核心就是消除子查询。那么从SQL语义出发,可以等价改写SQL为: 1 2 3 4 5 6 select 1, coalesce(a4.c1, 0) from (select count(*) c1, a4.ca_address_sk from customer_address_001 a4 group by a4.ca_address_sk) a4 right join customer_address_001 a on a4.ca_address_sk = a.ca_address_sk;
  • 优化说明 通常优化器总会选择最优的执行计划,但是众所周知代价估算,尤其是中间结果集的代价估算一般会有比较大的偏差,这种比较大的偏差就可能会导致agg的计算方式出现比较大的偏差,这时候就需要通过best_agg_plan进行agg计算模型的干预。 一般来说,当agg汇聚的收敛度很小时,即结果集的个数在agg之后并没有明显变少时(经验上以5倍为临界点),选择redistribute+hashagg执行方式,否则选择hashagg+redistribute+hashagg执行方式。
  • 现象描述 查询与销售部所有员工的信息: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 --建表 CREATE TABLE staffs (staff_id NUMBER(6) NOT NULL, first_name VARCHAR2(20), last_name VARCHAR2(25), employment_id VARCHAR2(10), section_id NUMBER(4), state_name VARCHAR2(10), city VARCHAR2(10)); CREATE TABLE sections(section_id NUMBER(4), place_id NUMBER(4), section_name VARCHAR2(20)); CREATE TABLE states(state_id NUMBER(4)); CREATE TABLE places(place_id NUMBER(4), state_id NUMBER(4)); --优化前查询 EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id; --优化后查询 CREATE INDEX loc_id_pk ON places(place_id); CREATE INDEX state_c_id_pk ON states(state_id); EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id;
  • 现象描述 查询与销售部所有员工的信息: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 --建表 CREATE TABLE staffs (staff_id NUMBER(6) NOT NULL, first_name VARCHAR2(20), last_name VARCHAR2(25), employment_id VARCHAR2(10), section_id NUMBER(4), state_name VARCHAR2(10), city VARCHAR2(10)); CREATE TABLE sections(section_id NUMBER(4), place_id NUMBER(4), section_name VARCHAR2(20)); CREATE TABLE states(state_id NUMBER(4)); CREATE TABLE places(place_id NUMBER(4), state_id NUMBER(4)); --优化前查询 EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id; --优化后查询 CREATE INDEX loc_id_pk ON places(place_id); CREATE INDEX state_c_id_pk ON states(state_id); EXPLAIN SELECT staff_id,first_name,last_name,employment_id,state_name,city FROM staffs,sections,states,places WHERE sections.section_name='Sales' AND staffs.section_id = sections.section_id AND sections.place_id = places.place_id AND places.state_id = states.state_id ORDER BY staff_id;