Flexus L实例
即开即用,轻松运维,开启简单上云第一步
立即查看
免费体验中心
免费领取体验产品,快速开启云上之旅
立即前往
企业级DeepSeek
支持API调用、知识库和联网搜索,满足企业级业务需求
立即购买
免费体验中心
免费领取体验产品,快速开启云上之旅
立即前往
企业级DeepSeek
支持API调用、知识库和联网搜索,满足企业级业务需求
立即前往
Flexus L实例
即开即用,轻松运维,开启简单上云第一步
立即查看
免费体验中心
免费领取体验产品,快速开启云上之旅
¥0.00
元
Flexus L实例
即开即用,轻松运维,开启简单上云第一步
立即前往
企业级DeepSeek
支持API调用、知识库和联网搜索,满足企业级业务需求
立即购买
- 增量训练机器学习模型 内容精选 换一换
-
第一种融合路线是KG增强LLM,可在LLM预训练、推理阶段引入KG。以KG增强LLM预训练为例,一个代表工作是百度的ERNIE 3.0将图谱三元组转换成一段token文本作为输入,并遮盖其实体或者关系来进行预训练,使模型在预训练阶段直接学习KG蕴含的知识。 第二种融合路线是LLM增强KG。LLM可用于KG构建、KG来自:百科
- 增量训练机器学习模型 相关内容
-
本课程介绍了在降低模型对特定应用场景数据依赖方面所开展的一些研究工作。 课程目标 通过本课程的学习,使学员了解: 1、如何构建高效的神经网络基础模型。 2、如何学习显著性物体、边缘等通用属性。 3、如何利用通用属性构建弱监督学习模型,并进而利用互联网数据自主完成知识学习。 课程大纲 第1章来自:百科来自:百科
- 增量训练机器学习模型 更多内容
-