华为云用户手册

  • 步骤二:获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 containerd 容器引擎有命名空间的概念。Kubernetes 下使用的 containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io pull {image_url} 使用nerdctl工具拉取镜像。 nerdctl --namespace k8s.io pull {image_url} 集群有多个节点,要确保每个节点都拥有镜像。 镜像获取完成后可通过如下其中一个命令进行查看: # ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list
  • 步骤六:编写Config.yaml文件 k8s有两种方式来管理对象: 命令式,即通过Kubectl指令直接操作对象。 声明式,通过定义资源YAML格式的文件来操作对象。 首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: # data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 双个节点训练的config.yaml文件模板,用于实现双机分布式训练。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: #data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure - name: work replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 参数说明: ${container_name} 容器名称,此处可以自己定义一个容器名称,例如ascendspeed。 ${image_name} 为步骤五:修改并上传镜像中,上传至SWR上的镜像链接。 ${command} 使用config.yaml文件创建pod后,在容器内自动运行的命令。在进行训练任务中会给出替换命令。 /mnt/sfs_turbo 为宿主机中默认挂载SFS Turbo的工作目录,目录下存放着训练所需代码、数据等文件。 同样,/mnt/sfs_turbo 也可以映射至容器中,作为容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。为方便访问两个地址可以相同。 ${pvc_name} 为在CCE集群关联SFS Turbo步骤中创建的PVC名称。 在设置容器中需要的CPU与内存大小时,可通过运行以下命令查看申请的节点机器中具体的CPU与内存信息。 kubectl describe node ${requests_cpu} 指在容器中请求的最小CPU核心数量,可使用Requests中的值,例如2650m。 ${requests_memory} 指在容器中请求的最小内存空间大小,可使用Requests中的值,例如3200Mi。 ${limits_cpu} 指在容器中可使用的最大CPU核心数量,例如192。 ${limits_memory} 指在容器中可使用的最大内存空间大小,例如换算成1500Gi。
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_3_ascend:pytorch_2.3.1-cann_8.0.rc3-py_3.10-hce_2.0.2409-aarch64-snt9b-20241213131522-aafe527 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.3.1
  • 新增委托授权操作SFS Turbo 登录ModelArts管理控制台,在左侧导航栏选择“权限管理”,进入“权限管理”页面。 单击“添加授权”,进入“访问授权”配置页面,根据参数说明进行配置。 “授权对象类型”:根据需要选择" IAM 子用户"、"联邦用户"、"委托用户"、"所有用户" “授权对象”:选择授权对象 “委托选择”:新增委托 “权限配置”:普通模式,选中弹性文件服务(SFSTurbo)下的"sfsturbo:shares:addShareNic"、"sfsturbo:shares:deleteShareNic"、"sfsturbo:shares:showShareNic"、"sfsturbo:shares:listShareNics" 单击“创建”。此时,拥有该委托的所有用户均有权限进行关联与解除关联操作。 图1 创建授权ModelArts云服务操作SFS Turbo的部分权限
  • 约束限制 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 确保scheduler实例和P、D实例之间网络通畅,检查代理设置例如no_proxy环境变量,避免scheduler访问P、D实例时走不必要的网关。
  • 步骤三:启动增量推理实例 启动增量推理容器 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了2张卡davinci6、davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 如果需要多个增量实例,每个增量都需要启动一个容器,只挂载对应的NPU --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即步骤四:制作推理镜像中生成的新镜像ID,在宿主机上可通过docker images查询得到。 进入容器 docker exec -it -u ma-user ${container_name} /bin/bash 启动增量推理实例,命令如下。 export GLOBAL_RANK_TABLE_FILE_PATH=global_ranktable_10.**.**.18.json export RANK_TABLE_FILE_PATH=local_rank_table_10.**.**.18_67.json export NODE_PORTS=8088,8089 export USE_OPENAI=1 sh AscendCloud-LLM/llm_tools/PD_separate/start_servers.sh \ --model=${model} \ --tensor-parallel-size=2 \ --max-model-len=4096 \ --max-num-seqs=256 \ --max-num-batched-tokens=4096 \ --host=0.0.0.0 \ --port=8089 \ --served-model-name ${served-model-name} 其中环境变量说明如下: GLOBAL_RANK_TABLE_FILE_PATH:global rank_table的路径,必选。不同实例类型的global rank_table均一致。 RANK_TABLE_FILE_PATH:local rank_table的路径,必选。当实例类型为全量推理实例或者增量推理实例,local rank_table配置local_ranktable_xx_yy.json文件,其中xx表示当前实例的IP地址,yy表示当前实例使用的device_id信息;当实例类型为服务入口实例,local rank_table配置local_ranktable_xx_host.json文件,其中xx表示当前实例的IP地址。 NODE_PORTS:仅在服务入口实例生效,用于与全量推理实例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量/增量推理实例启动的--port参数相关,--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用,(英文逗号)分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP地址 --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量 --max-model-len:模型能处理的请求输入+输出的token长度 --max-num-batched-tokens:最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192 --tensor-parallel-size:模型并行数量 --served-model-name:OpenAI服务的model入参名称,仅在环境变量USE_OPENAI=1时生效。 --quantization:如果需要增加模型量化功能,启动推理服务前,先参考量化章节对模型做量化处理。
  • 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 PD分离部署场景下,大模型推理的Prefill阶段(全量推理)和Decode阶段(增量推理)分别实例化部署在不同的推理卡资源上同时进行推理,用于提高资源利用效率。 PD分离结合Prefill阶段的计算密集型特性,以及Decode阶段的访存密集型特性,通过调节PD节点数量配比来提升Decode节点的batch size来充分发挥NPU卡的算力,进而提升集群整体吞吐。 此外,在Decode平均低时延约束场景,PD分离相比PD混合部署,更加能够发挥性能优势。 分离部署的实例类型启动分为以下三个阶段: 启动全量推理实例:必须为NPU实例,用于启动全量推理服务,负责输入的全量推理。全量推理占用至少1个容器。 启动增量推理实例:必须为NPU实例,用于启动增量推理服务,负责输入的增量推理。增量推理占用至少1个容器。 启动scheduler实例:可为CPU实例,用于启动api-server服务,负责接收推理请求,向全量或增量推理实例分发请求,收集推理结果并向客户端返回推理结果。服务调度实例不占用显卡资源,建议增加1个容器,也可以在全量推理或增量推理的容器上启动。
  • 步骤四:启动scheduler实例 建议在PD服务(即全量推理和增量推理服务)启动后,再启动scheduler服务。 启动scheduler容器。启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即步骤四:制作推理镜像中生成的新镜像ID,在宿主机上可通过docker images查询得到。 进入容器。 docker exec -it -u ma-user ${container_name} /bin/bash 启动scheduler实例,命令如下。 export GLOBAL_RANK_TABLE_FILE_PATH=global_ranktable_10.**.**.18.json export RANK_TABLE_FILE_PATH=local_rank_table_10.**.**.18_host.json export NODE_PORTS=8088,8089 export USE_OPENAI=1 export no_proxy=localhost,127.0.0.1,10.**.**.18 sh AscendCloud-LLM/llm_tools/PD_separate/start_servers.sh \ --model=${model} \ --tensor-parallel-size=2 \ --max-model-len=4096 \ --max-num-seqs=256 \ --max-num-batched-tokens=4096 \ --host=0.0.0.0 \ --port=9000 \ --served-model-name ${served-model-name} # 当前schduler端口port对外提供推理服务,故使用该端口进行性能验证和精度对齐 其中环境变量说明如下: GLOBAL_RANK_TABLE_FILE_PATH:global rank_table的路径,必选。不同实例类型的global rank_table均一致。 NODE_PORTS:仅在服务入口实例生效,用于与全量推理实例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量/增量推理实例启动的--port参数相关,--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对外服务端口,而8088、8089则为scheduler调度推理服务端口。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 no_proxy:可选,避免scheduler实例和P、D实例之间访问时走不必要的网关。 其中常见的参数如下, --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量 --max-model-len:模型能处理的请求输入+输出的token长度 --max-num-batched-tokens:最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192 --tensor-parallel-size:模型并行数量 --served-model-name:openai服务的model入参名称,仅在环境变量USE_OPENAI=1时候生效。 --quantization:如果需要增加模型量化功能,启动推理服务前,先参考量化章节对模型做量化处理。 --prefill-routing-policy:全量节点路由策略,支持RoundRobin(轮询,默认)、FreeKVFirst(优先调度到空闲KV最多的节点)、BLB(优先调度到排队请求数量最少的节点)三种。
  • 步骤二:启动全量推理实例 以下介绍如何启动全量推理实例。 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了2张卡davinci4、davinci5。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 说明: 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 如果需要多个全量实例,每个全量都需要启动一个容器,只挂载对应的NPU --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即步骤四:制作推理镜像中生成的新镜像ID,在宿主机上可通过docker images查询得到。 进入容器。 docker exec -it -u ma-user ${container_name} /bin/bash 启动全量推理实例,命令如下。 export GLOBAL_RANK_TABLE_FILE_PATH=global_ranktable_10.**.**.18.json export RANK_TABLE_FILE_PATH=local_rank_table_10.**.**.18_45.json export NODE_PORTS=8088,8089 export USE_OPENAI=1 sh AscendCloud-LLM/llm_tools/PD_separate/start_servers.sh \ --model=${model} \ --tensor-parallel-size=2 \ --max-model-len=4096 \ --max-num-seqs=256 \ --max-num-batched-tokens=4096 \ --host=0.0.0.0 \ --port=8088 \ --served-model-name ${served-model-name} 其中环境变量说明如下: GLOBAL_RANK_TABLE_FILE_PATH:global rank_table的路径,必选。不同实例类型的global rank_table均一致。 RANK_TABLE_FILE_PATH:local rank_table的路径,必选。当实例类型为全量推理实例或者增量推理实例,local rank_table配置local_ranktable_xx_yy.json文件,其中xx表示当前实例的IP地址,yy表示当前实例使用的device_id信息;当实例类型为服务入口实例,local rank_table配置local_ranktable_xx_host.json文件,其中xx表示当前实例的IP地址。 NODE_PORTS:仅在服务入口实例生效,用于与全量推理实例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量或增量推理实例启动的--port参数相关。--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量 --max-model-len:模型能处理的请求输入+输出的token长度 --max-num-batched-tokens:最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192 --tensor-parallel-size:模型并行数量 --served-model-name:OpenAI服务的model入参名称,仅在环境变量USE_OPENAI=1时生效。 --quantization:如果需要增加模型量化功能,启动推理服务前,先参考量化章节对模型做量化处理。 --prefill-batching-policy:针对PD分离场景下的P实例调度策略选择,支持fcfs(先来先服务,vllm默认)及gtsf(Group Time Short First,组内等待时间最短优先)两种策略,若负载比较高且请求长度差异大可以选择gtsf进行尝试。 参数定义和使用方式与vLLM0.6.3版本一致,此处介绍关键参数。详细参数解释请参见https://github.com/vllm-project/vllm/blob/main/vllm/engine/arg_utils.py。
  • 步骤一:生成ranktable 介绍如何生成ranktable,以1p1d-tp2分离部署模式为例。当前1p1d分离部署模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root_path_of_AscendCloud-LLM}/llm_tools 其中,${root_path_of_AscendCloud-LLM}为AscendCloud-LLM包解压后的根路径。 当使用昇腾云的官方指导文档制作推理镜像时,可直接基于该固定路径配置环境变量: export LLM_TOOLS_PATH=/home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools 获取每台机器的rank_table 在每个机器生成global rank_table信息与local rank_table信息。 python ${LLM_TOOLS_PATH}/PD_separate/pd_ranktable_tools.py --mode gen --prefill-server-list 4,5 --decode-server-list 6,7 --api-server --save-dir ./save_dir 执行后,会生成一个global_ranktable.json文件和使用实例个数的local_ranktable.json文件;如果指定了--api-server,还会生成一个local_ranktable_host.json文件用于确定服务入口实例。 ./save_dir生成ranktable文件如下(假设本地主机ip为10.**.**.18)。 global_ranktable_10.**.**.18.json # global rank_table local_ranktable_10.**.**.18_45.json # 全量节点local rank_table local_ranktable_10.**.**.18_67.json # 增量节点local rank_table local_ranktable_10.**.**.18_host.json # api-server 如果要启动多P多D服务,则需要修改--prefill-server-list和--decode-server-list参数,每个实例之间用空格隔开,例如2p2d-tp2: python ${LLM_TOOLS_PATH}/PD_separate/pd_ranktable_tools.py --mode gen --prefill-server-list 0,1 2,3 --decode-server-list 4,5 6,7 --api-server --save-dir ./save_dir 合并不同机器的global rank_table(可选) 如果分离部署在多台机器,获取每台机器的rank_table后,合并各个机器的global rank_table得到完整的global rank_table。 python ${LLM_TOOLS_PATH}/PD_separate/pd_ranktable_tools.py --mode merge --global-ranktable-list ./ranktable/global_ranktable_0.0,0,0.json ./ranktable/global_ranktable_1.1.1.1.json --save-dir ./save_dir pd_ranktable_tools.py的入参说明如下。 --mode:脚本的处理模式,可选值为gen或者merge。gen模式表示生成rank_table文件,merge模式表示合并global rank_table文件。 --save-dir:保存生成的rank_table文件的根目录,默认为当前目录。 --api-server:仅在gen模式有效,可选输入,当存在该输入时,表示分离部署的服务入口在该机器。注意,在多台机器启动分离部署时,只能有一台机器存在服务入口。当存在该输入时,会生成local_ranktable_xx_host.json文件,用于在启动推理服务时确定服务入口实例。 --prefill-server-list:仅在gen模式有效,可选输入,后续入参表示若干个vllm全量实例,使用空格隔开,每个vllm实例的数字表示使用的昇腾卡device_id,使用多个昇腾卡时,device_id之间使用英文逗号`,`分隔开。当存在该输入时,会生成对应全量实例个数的local_ranktable_xx_yy.json文件,用于在启动推理服务时确定全量实例。 --decode-server-list:仅在gen模式有效,可选输入,后续入参表示若干个vllm增量实例,使用空格隔开,每个vllm实例的数字表示使用的昇腾卡device_id,使用多个昇腾卡时,device_id之间使用英文逗号`,`分隔开。当存在该输入时,会生成对应增量实例个数的local_ranktable_xx_yy.json文件,用于在启动推理服务时确定增量实例。 --global-ranktable-list:仅在merge模式有效,必选输入,后续入参表示需要合并的global rank_table,使用空格分隔开。 合并不同机器的global rank_table后,会生成新合并的global_ranktable_merge.json文件。 global_rank_table.json格式说明 server_group_list的长度必须为3,第一个元素(group_id="0")代表Scheduler实例的ip信息,只能有一个实例。 第二个元素(group_id="1")代表全量实例信息,长度即为全量实例个数。其中需要配置每个全量实例的ip信息以及使用的device信息。rank_id为逻辑卡号,必然从0开始计算,device_id为物理卡号,device_ip则通过上面的hccn_tool获取。 第三个元素(group_id="2")代表增量实例信息,长度即为增量实例个数。其余信息和全量类似。 global_rank_table.json具体示例如下: { "version": "1.0", "status": "completed", "server_group_list": [ { "group_id": "0", "server_count": "1", "server_list": [ { "server_id": "localhost", "server_ip": "localhost" } ] }, { "group_id": "1", "server_count": "1", "server_list": [ { "server_id": "localhost", "server_ip": "localhost", "device": [ { "device_id": "4", "device_ip": "10.**.**.22", "rank_id": "0" }, { "device_id": "5", "device_ip": "10.**.**.23", "rank_id": "1" } ] } ] }, { "group_id": "2", "server_count": "1", "server_list": [ { "server_id": "localhost", "server_ip": "localhost", "device": [ { "device_id": "6", "device_ip": "29.**.**.56", "rank_id": "0" }, { "device_id": "7", "device_ip": "29.**.**.72", "rank_id": "1" } ] } ] } ] } ``` local_rank_table.json格式说明 每个全量/增量实例都需要local_rank_table.json。下面以某一个增量实例为例,需要和global_rank_table.json中的增量信息完全对应,group_id为0。 ``` { "version": "1.0", "status": "completed", "group_id": "0", "server_count": "1", "server_list": [ { "server_id": "localhost", "server_ip": "localhost", "device": [ { "device_id": "6", "device_ip": "29.**.**.56", "rank_id": "0" }, { "device_id": "7", "device_ip": "29.**.**.72", "rank_id": "1" } ] } ] } ```
  • 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_3_ascend:pytorch_2.3.1-cann_8.0.rc3-py_3.10-hce_2.0.2409-aarch64-snt9b-20241213131522-aafe527 CANN:cann_8.0.rc3 PyTorch:2.3.1
  • 基础镜像的使用 用户通过E CS 获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像的方式(可二选一)来部署训练环境。方案的区别如下: ARM架构的镜像必须使用ARM架构的ECS实例,x86架构的镜像必须使用x86架构的ECS实例。 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 使用以上方案时,都会下载Megatron-LM、MindSpeed、ModelLink源码至 AscendFactory/third-party/ |──MindSpeed/ # MindSpeed昇腾大模型加速库 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──ModelLink/ # ModelLink端到端的大语言模型方案 |——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——... |──transformers.patch |──llama-factory.patch 训练作业的资源池以及ECS都需要连通公网,否则会安装和下载失败。资源池打通公网配置请参见配置Standard专属资源池访问公网,ECS打通公网配置请参见ECS绑定弹性公网IP。
  • 问题3:训练过程报错:ImportError: XXX not found in your environment: flash_attn 根因:昇腾环境暂时不支持flash_attn接口 规避措施:修改dynamic_module_utils.py文件,将180-184行代码注释掉 vim /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/transformers/dynamic_module_utils.py
  • 问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim /home/ma-user/anaconda3/envs/PyTorch-2.2.0/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py 修改def _exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数
  • 问题5:训练完成使用vllm0.6.0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤: pip install transformers==4.45.0 pip install tokenizers==0.20.0 使用原始hf权重的tokenizer.json覆盖保存的tokenizer.json即可,如llama3-8b_lora具体过程如下: # 进入模型tokenizer目录 cd /home/ma-user/ws/tokenizers/llama3-8b/ # 替换tokenizer.json文件 cp -f tokenizer.json /home/ma-user/ws/saves/rm/llama3-8b/lora/tokenizer.json
  • 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF="expandable_segments:True" 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。
  • 第三方案例列表 第三方案例来源为华为云开发者社区“云驻计划”。由于ModelArts产品的持续更新和迭代,第三方案例中的界面和步骤可能因时效性而与最新产品有所差异,仅供学习和参考。 表6 第三方案例列表 分类 文章名称 作者 Standard自动学习 2步打通ModelArts和Astro实现AI应用落地 胡琦 Standard开发环境 想不想让一张静态的照片动起来 林欣 基于TensorFlow训练轻量化ssdlite_mbv2人脸手机检测模型 AI练习生 基于ModelArts的手写数字识别 AXYZdong AI 文字编辑图片 instruct-pix2pix 案例 AXYZdong Standard推理部署 上线二维码检测识别服务 林欣 使用ModelArts对8类常见生活垃圾进行分类 福州司马懿 使用ModelArts搭建"花卉种类识别"服务 福州司马懿
  • 文生视频场景 样例 场景 说明 CogVideoX训练推理基于DevServer适配PyTorch NPU指导 Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导 Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导 Open-Sora 1.0基于Lite Server适配PyTorch NPU训练指导(6.3.905) CogVideo模型、Open-Sora模型训练推理 介绍CogVideo、Open-Sora-Plan、Open-Sora1.2模型基于ModelArts DevServer的训练推理过程,训练使用PyTorch框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,应用于文生视频场景。
  • ModelArts Standard推理部署 表5 推理部署列表 样例 对应功能 场景 说明 基于ModelArts Standard一键完成商超商品识别模型部署 在线服务 物体检测 此案例以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的 免费体验 过程。 第三方推理框架迁移到ModelArts Standard推理自定义引擎 第三方框架 推理部署 - ModelArts支持第三方的推理框架在ModelArts上部署,本文以TFServing框架、Triton框架为例,介绍如何迁移到推理自定义引擎。
  • ModelArts Standard模型训练案例 表4 自定义算法样例列表 样例 镜像 对应功能 场景 说明 使用ModelArts Standard自定义算法实现手写数字识别 PyTorch 自定义算法 手写数字识别 使用用户自己的算法,训练得到手写数字识别模型,并部署后进行预测。 从0制作自定义镜像并用于训练(PyTorch+CPU/GPU) PyTorch 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 从0制作自定义镜像并用于训练(MPI+CPU/GPU) MPI 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 从0制作自定义镜像并用于训练(Tensorflow+GPU) Tensorflow 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 从0制作自定义镜像并用于训练(MindSpore+Ascend) MindSpore 镜像制作 自定义镜像训练 - 此案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是NPU。
  • 文生图模型训练推理场景 样例 场景 说明 SDXL基于Standard适配PyTorch NPU的LoRA训练指导 SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导 SD1.5&SDXL Kohya框架基于DevServer适配PyTorch NPU训练指导 SDXL、SD1.5模型训练 介绍AIGC模型SDXL、SD1.5基于ModelArts Lite Server的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。训练后的模型可用于推理部署,应用于文生图场景。 SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导 SDXL、SD1.5模型推理 介绍AIGC模型SDXL、SD1.5基于ModelArts Lite Server的推理过程,推理使用PyTorch框架和昇腾NPU计算资源。 启动推理服务后,可应用于文生图场景。 Open-Clip基于Lite Server适配PyTorch NPU训练指导 Open-Clip模型训练 介绍Open-Clip模型基于ModelArts Lite Server的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 应用于AIGC和多模态视频编码器。
  • 数字人场景 样例 场景 说明 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导 Wav2Lip训练基于DevServer适配PyTorch NPU训练指导 Wav2Lip,人脸说话视频模型,训练、推理 Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 案例主要介绍如何基于ModelArts Lite Server上的昇腾NPU资源进行模型训练推理。
  • ModelArts Standard自动学习案例 表2 自动学习样例列表 样例 对应功能 场景 说明 口罩检测 自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。
  • ModelArts Standard开发环境案例 表3 Notebook样例列表 样例 镜像 对应功能 场景 说明 将Notebook的Conda环境迁移到SFS磁盘 - 环境迁移 开发环境 本案例介绍如何将Notebook的Conda环境迁移到SFS磁盘上。 使用ModelArts VSCode插件调试训练ResNet50图像分类模型 MindSpore VS Code Toolkit工具 目标检测 本案例以Ascend Model Zoo为例,介绍如何通过VS Code插件及ModelArts Notebook进行云端数据调试及模型开发。
  • 内容审核 场景 样例 场景 说明 Bert基于Lite Server适配MindSpore Lite推理指导(6.3.910) Yolov8基于Lite Server适配MindSpore Lite推理指导(6.3.909) Paraformer基于Lite Server适配PyTorch NPU推理指导(6.3.911) Bert、Yolov8、Paraformer等内容审核模型推理 案例主要介绍内容审核场景的相关模型如何基于ModelArts Lite Server上的昇腾NPU资源进行模型推理。
  • LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts Lite Server的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts Standard的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于DevServer适配PyTorch NPU推理指导 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts Lite Server的推理部署过程,推理使用PyTorch框架和昇腾NPU计算资源。 启动推理服务后,可用于搭建大模型问答助手。 主流开源大模型基于Standard适配PyTorch NPU推理指导 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts Standard的推理部署过程,推理使用PyTorch框架和昇腾NPU计算资源。 启动推理服务后,可用于搭建大模型问答助手。
  • 多模态模型场景 样例 场景 说明 Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912) Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912) Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909) MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912) MiniCPM-V2.0推理及LoRA微调基于Lite Server适配PyTorch NPU指导(6.3.910) InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912) LLaVA-NeXT基于Lite Server适配PyTorch NPU训练微调指导(6.3.912) LLaVA模型基于Lite Server适配PyTorch NPU预训练指导(6.3.912) LLaVA模型基于Lite Server适配PyTorch NPU推理指导(6.3.906) Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912) LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910) moondream2基于Lite Server适配PyTorch NPU推理指导 Qwen-VL、MiniCPM-V2系列、InternVL2、LLaVA-NeXT、LLaVA、Llama 3.2-Vision、LLaMA-VID、moondream2等模型的训练或推理 介绍常见多模态模型使用PyTorch框架和昇腾NPU计算资源,基于ModelArts Lite Server或者Standard的训练或推理过程。
  • per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在TensorRT-LLM/examples路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907-xxx.zip软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一: swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a 从SWR拉取。
  • Step4 安装依赖和软件包 从github拉取Wav2Lip代码。 cd /home/ma-user git clone https://github.com/Rudrabha/Wav2Lip.git cd /home/ma-user/Wav2Lip git reset --hard f361e9527b917a435928a10 如果出现报错SSL certificate problem: self signed certificate in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip.git 安装Wav2Lip Ascend软件包。 将获取到的Wav2Lip Ascend软件包AscendCloud-AIGC-*.zip文件上传到容器的/home/ma-user目录下。获取路径参见表2。 解压AscendCloud-AIGC-*.zip文件,解压后将里面指定文件与对应Wave2Lip文件进行替换。 cd /home/ma-user unzip AscendCloud-AIGC-*.zip -d ./AscendCloud cp AscendCloud/multimodal_algorithm/Wav2Lip/train/f361e9527b917a435928a10/* /home/ma-user/Wav2Lip/ rm -rf AscendCloud* AscendCloud-AIGC-*.zip后面的*表示时间戳,请按照实际替换。 要替换的文件目录结构如下所示: |---Wav2Lip_code/ --- requirements.txt #建议的依赖包版本 注:需要对以下文件进行修改 --- color_syncnet_train.py #训练expert discriminator唇形同步鉴别器 --- wav2lip_train.py #训练 Wav2Lip 模型 --- preprocess.py #对初始视频数据进行推理 在以上三个文件内import末尾增加import如下: import torch_npu from torch_npu.contrib import transfer_to_npu 安装Python依赖包,文件为requirements.txt文件。 pip install -r requirements.txt
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全