华为云用户手册
-
基本语法 DROP [TEMPORARY] TABLE [IF EXISTS] [database_name.]name [ON CLUSTER cluster] [SYNC] 示例: 删除表t1。 drop table t1 SYNC; 在删除复制表时,因为复制表需要在Zookeeper上建立一个路径,存放相关数据。ClickHouse默认的库引擎是原子数据库引擎,删除Atomic数据库中的表后,它不会立即删除,而是会在24小时后删除。在删除表时,加上SYNC字段,即可解决该问题,例如:drop table t1 SYNC; 删除本地表和分布式表,则不会出现该问题,可不带SYNC字段,例如:drop table t1; 如果建表语句中包含了“ON CLUSTER ClickHouse集群名”,删除表命令: drop table 表名 ON CLUSTER default_cluster; 如果建表语句不包含“ON CLUSTER ClickHouse集群名”,删除表命令: drop table 表名; 删除数据表前,需确认此数据表是否应用中,以免引起不必要的麻烦。删除数据表后可在24小时内恢复,超过24小时无法恢复。恢复命令如下: set allow_experimental_undrop_table_query = 1; UNDROP TABLE 数据表名;
-
CREATE DATABASE CREATE DATABASE [IF NOT EXISTS] db_name [ON CLUSTER ClickHouse集群名]; 表1 参数说明 参数 说明 db_name 数据库 IF NOT EXISTS 如果CREATE语句中存在IF NOT EXISTS关键字,则当数据库已经存在时,该语句不会创建数据库,且不会返回任何错误。 ON CLUSTER ClickHouse集群名 用于指定集群名称。 集群名信息可以使用以下语句的cluster字段获取: select cluster,shard_num,replica_num,host_name from system.clusters;
-
使用示例 创建数据库demo。 create database demo ON CLUSTER default_cluster; 查看新建的数据库。 host-172-16-30-9 :) show databases; SHOW DATABASES Query id: ced1af23-0286-40cc-9c7a-ccbca41178d8 ┌─name───────────────┐ │ INFORMATION_SCHEMA │ │ default │ │ demo │ │ information_schema │ │ system │ └────────────────────┘ 5 rows in set. Elapsed: 0.002 sec.
-
操作步骤 导出Jar包。 右击样例工程,选择导出。 图1 导出Jar包 选择JAR file,单击“Next”。 图2 选择JAR file 勾选“src”目录,导出Jar包到指定位置。单击两次“Next”。 图3 选择导出路径 单击“Finish”,完成导出Jar包。 准备依赖的Jar包和配置文件。 在Linux环境新建目录,例如“/opt/test”,并创建子目录“lib”和“conf”。将样例工程中“lib”的Jar包,以及1导出的Jar包,上传到Linux的“lib”目录。将样例工程中“conf”的配置文件上传到Linux中“conf”目录。 在“/opt/test”根目录新建脚本“run.sh”,修改内容如下并保存: #!/bin/sh BASEDIR=`pwd` SECURE="" if [ $# -eq 1 ]; then SECURE="-Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty -Dzookeeper.client.secure=true" fi cd ${BASEDIR} for file in ${BASEDIR}/lib/*.jar do i_cp=$i_cp:$file echo "$file" done for file in ${BASEDIR}/conf/* do i_cp=$i_cp:$file done java -cp .${i_cp} ${SECURE} com.huawei.cloudtable.hbase.examples.TestMain 切换到“/opt/test”,执行以下命令,运行Jar包。 未开启加密通道的HBase集群 sh run.sh 开启加密通道的HBase集群 sh run.sh secure 如果使用其他方式运行应用访问开启了加密通道的HBase集群,需要自行添加JVM参数:"-Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty -Dzookeeper.client.secure=true
-
基本语法 标准格式插入数据。 INSERT INTO [db.]table [(c1, c2, c3)] VALUES (v11, v12, v13), (v21, v22, v23), ... 对于存在于表结构中但不存在于插入列表中的列,它们将会按照如下方式填充数据: 如果存在DEFAULT表达式,根据DEFAULT表达式计算被填充的值。 如果没有定义DEFAULT表达式,则填充零或空字符串。 接复制表结构创建表示例,插入数据: insert into demo_t values(1,'Candy','23','M'),(2,'cici','33','F'); 使用SELECT的结果写入。 INSERT INTO [db.]table [(c1, c2, c3)] SELECT ... 写入的列与SELECT的列的对应关系是使用位置来进行对应的,它们在SELECT表达式与INSERT中的名称可以是不同的。需要对它们进行对应的类型转换。 除了VALUES格式之外,其他格式中的数据都不允许出现诸如now(),1+2等表达式。VALUES格式允许您有限度的使用这些表达式,但是不建议您这么做,因为执行这些表达式很低效。
-
复合分区与单分区 复合分区。 第一级称为Partition,即分区。用户可以指定某一维度列作为分区列(当前只支持整型和时间类型的列),并指定每个分区的取值范围。 第二级称为Distribution,即分桶。用户可以指定一个或多个维度列以及桶数对数据进行HASH分布或者不指定分桶列设置成Random Distribution对数据进行随机分布。 此场景推荐使用复合分区。 有时间维度或类似带有序值的维度,可以以这类维度列作为分区列。分区粒度可以根据导入频次、分区数据量等进行评估。 历史数据删除需求:如有删除历史数据的需求(比如仅保留最近N天的数据)。使用复合分区,可以通过删除历史分区来达到目的。也可以通过在指定分区内发送DELET语句进行数据删除。 解决数据倾斜问题:每个分区可以单独指定分桶数量。如按天分区,当每天的数据量差异很大时,可以通过指定分区的分桶数,合理划分不同分区的数据,分桶列建议选择区分度大的列。 单分区。 用户也可以不使用复合分区,即使用单分区。则数据只做Hash分布。
-
关于Random Distribution的设置以及使用场景 如果OLAP表没有更新类型的字段,将表的数据分桶模式设置为RANDOM,则可以避免严重的数据倾斜(数据在导入表对应的分区的时候,单次导入作业每个batch的数据将随机选择一个tablet进行写入)。 当表的分桶模式被设置为RANDOM时,因为没有分桶列,无法根据分桶列的值仅对几个分桶查询,对表进行查询的时候将对命中分区的全部分桶同时扫描,该设置适合对表数据整体的聚合查询分析而不适合高并发的点查询。 如果OLAP表的是Random Distribution的数据分布,那么在数据导入的时候可以设置单分片导入模式(将load_to_single_tablet设置为true),那么在大数据量的导入的时候,一个任务在将数据写入对应的分区时将只写入一个分片,这样将能提高数据导入的并发度和吞吐量,减少数据导入和Compaction导致的写放大问题,保障集群的稳定性。
-
关于Partition和Bucket的数量和数据量的建议 一个表的Tablet总数量等于 (Partition num*Bucket num)。 一个表的Tablet数量,在不考虑扩容的情况下,推荐略多于整个集群的磁盘数量。 单个Tablet的数据量理论上没有上下界,但建议在1G-10G的范围内。如果单个Tablet数据量过小,则数据的聚合效果不佳,且元数据管理压力大。如果数据量过大,则不利于副本的迁移、补齐,且会增加Schema Change或者Rollup操作失败重试的代价(这些操作失败重试的粒度是Tablet)。 当Tablet的数据量原则和数量原则冲突时,建议优先考虑数据量原则。 在建表时,每个分区的Bucket数量统一指定。但是在动态增加分区时(ADD PARTITION),可以单独指定新分区的Bucket数量。可以利用这个功能方便的应对数据缩小或膨胀。 一个Partition的Bucket数量一旦指定,不可更改。所以在确定Bucket数量时,需要预先考虑集群扩容的情况。比如当前只有3台host,每台host有1块盘。如果Bucket的数量只设置为3或更小,那么后期即使再增加机器,也不能提高并发度。 举一些例子:假设在有10台BE,每台BE一块磁盘的情况下。如果一个表总大小为500MB,则可以考虑4-8个分片。5GB:8-16个分片。50GB:32个分片。500GB:建议分区,每个分区大小在50GB左右,每个分区16-32个分片。5TB:建议分区,每个分区大小在50GB 左右,每个分区16-32个分片。
-
创建物化视图 CREATE MATERIALIZED VIEW [IF NOT EXISTS] [db.]Materialized_name [TO[db.]name] [ON CLUSTERClickHouse集群名] ENGINE = engine_name() ORDER BY expr [POPULATE] AS SELECT ... 表1 参数说明 参数 说明 db 数据库的名称,默认为当前选择的数据库。 Materialized_name 物化视图名。 TO[db.]name 将物化视图的数据写入到新表中。 [ON CLUSTERClickHouse集群名] 在每一个节点上都创建一个物化视图,固定为ON CLUSTER ClickHouse集群名。 ENGINE = engine_name() 表引擎类型。 [POPULATE] POPULATE关键字。如果创建物化视图时指定了POPULATE关键字,则在创建时将SELECT子句所指定的源表数据插入到物化视图中。不指定POPULATE关键字时,物化视图只会包含在物化视图创建后新写入源表的数据。 说明: 一般不推荐使用POPULATE关键字,因为在物化视图创建期间写入源表的数据将不会写入物化视图中。 SELECT ... SELECT子句。当数据写入物化视图中SELECT子句所指定的源表时,插入的数据会通过SELECT子句查询进行转换并将最终结果插入到物化视图中。 说明: SELECT查询可以包含DISTINCT、GROUP BY、ORDER BY和LIMIT等,但是相应的转换是在每个插入数据块上独立执行的。 示例: 创建源表。 create table DB.table1 ON CLUSTER default_cluster (id Int16,name String) ENGINE = MergeTree() ORDER BY (id); 插入数据。 insert into DB.table1 values(1,'X'),(2,'Y'),(3,'Z'); 创建基于源表的物化视图。 CREATE MATERIALIZED VIEW demo_view ON CLUSTER default_cluster ENGINE = MergeTree() ORDER BY (id) AS SELECT * FROM DB.table1; 查询物化视图。 SELECT * FROM demo_view; 查询数据为空,说明未指定POPULATE关键字时,查询不到物化视图创建前写入源表的数据。 DB.table1表中插入数据。 insert into demo_view values(4,'x'),(5,'y'),(6,'z'); 查询物化视图。 SELECT * FROM demo_view; 查询结果。 ┌─id─┬─name─┐ │ 4 │ x │ │ 5 │ y │ │ 6 │ z │ └────┴──────┘
-
操作步骤 导出Jar包。 右击样例工程,选择导出。 图1 导出Jar包 选择JAR file,单击“Next”。 图2 选择JAR file 勾选“src”和“conf”目录,导出Jar包到指定位置。单击两次“Next”。 图3 选择导出路径 单击“Finish”,完成导出Jar包。 执行Jar包。 在Linux客户端下执行Jar包的时候,先将应用开发环境中生成的Jar包拷贝上传至客户端安装目录的“lib”目录中,并确保Jar包的文件权限与其它文件相同。 用安装用户切换到客户端目录的“bin”目录下,然后运行如下命令使Jar包执行: [Ruby@cloudtable-08261700-hmaster-1-1 bin]# ./hbase com.huawei.cloudtable.hbase.examples.TestMain 其中,com.huawei.cloudtable.hbase.examples.TestMain为举例,具体以实际样例代码为准。
-
基本语法 ALTER TABLE [database_name].name [ON CLUSTER ClickHouse集群名] ADD|DROP|CLEAR|COMMENT|MODIFY COLUMN ... ALTER仅支持 *MergeTree ,Merge以及Distributed等引擎表。 示例: 创建表DB_table1。 CREATE TABLE DB_table1 ON CLUSTER default_cluster(Year UInt16,Quarter UInt8,Month UInt8,DayofMonth UInt8,DayOfWeek UInt8,FlightDate Date,FlightNum String,Div5WheelsOff String,Div5TailNum String)ENGINE = MergeTree() PARTITION BY toYYYYMM(FlightDate) PRIMARY KEY (intHash32(FlightDate)) ORDER BY (intHash32(FlightDate),FlightNum) SAMPLE BY intHash32(FlightDate) SETTINGS index_granularity= 8192; 给DB_table1增加列test。 ALTER TABLE DB_table1 ADD COLUMN test String DEFAULT 'defaultvalue'; 查表。 desc DB_tables; 修改表DB_table1列Year类型为UInt8。 ALTER TABLE DB_table1 MODIFY COLUMN Year UInt8; 查表结构。 desc DB_tables; 删除表DB_table1列test。 ALTER TABLE DB_table1 DROP COLUMN test; 查表。 desc DB_tables; 修改表DB_table1列Month为Month_test。 ALTER TABLE DB_table1 RENAME COLUMN Month to Month_test; 查表。 desc DB_tables;
-
样例代码 创建ClickHouse冷热分离表test_table。 CREATE TABLE IF NOT EXISTS test_table ( `timestamp` DATETIME NOT NULL COMMENT '日志时间', `type` INT NOT NULL COMMENT '日志类型', `error_code` INT COMMENT '错误码', `error_msg` VARCHAR(1024) COMMENT '错误详细信息', `op_id` BIGINT COMMENT '负责人id', `op_time` DATETIME COMMENT '处理时间' ) ENGINE = MergeTree() PARTITION BY timestamp ORDER BY timestamp TTL timestamp + INTERVAL 1 DAY TO DISK 'cold_disk' SETTINGS storage_policy = 'hot_to_cold'; 执行以下命令插入验证数据: insert into test_table values('2024-06-04 10:36:00','1','404','Resource Not Found','998756','2024-06-04 11:36:00'); -- hot data insert into test_table values('2024-06-04 10:35:00','1','404','Resource Not Found','998756','2024-06-04 11:35:00'); -- hot data insert into test_table values('2024-06-03 10:33:00','1','404','Resource Not Found','998756','2024-06-03 11:33:00'); -- cold data insert into test_table values('2024-03-27 09:10:00','1','200','ok','998756','2024-03-27 10:10:00'); -- cold data insert into test_table values('2024-03-25 11:08:00','1','404','Resource Not Found','998756','2024-03-25 12:08:00'); -- cold data 查询插入的数据。 查询数据。 select * from test_table FORMAT CS V; 查询数据表分区存储的分区字段名、分区和存储路径。 SELECT name,partition,active,path FROM system.parts WHERE database = 'default' and table = 'test_table' and active = 1; 图1 查询数据 当前系统时间为2024年6月4日22点,test_table表timestamp列超过一天的数据存储到了名为cold_disk的OBS下。
-
开始导入 下面我们通过几个实际的场景示例来看Broker Load的使用。 数据样例: '100','101','102','103','104','105',100.00,100.01,100.02,'100',200,100.08,2022-04-01 '101','102','103','104','105','105',100.00,100.01,100.02,'100',200,100.08,2022-04-02 '102','103','104','105','106','105',100.00,100.01,100.02,'100',200,100.08,2022-04-03 准备工作: 在本地创建示例数据文件source_text.txt,并上传至hdfs的/tmp/。 在hive中创建ods_source表。 CREATE TABLE `ods_source`( `id` string, `store_id` string, `company_id` string, `tower_id` string, `commodity_id` string, `commodity_name` string, `commodity_price` double, `member_price` double, `cost_price` double, `unit` string, `quantity` string, `actual_price` double, `day ` string ) row format delimited fields terminated by ',' lines terminated by '\n' stored as textfile; 将hdfs创建的txt文件导入到ods_source表。 load data inpath '/tmp/source_text.txt' into table ods_source;
-
相关系统配置 FE配置。 下面几个配置属于Broker load的系统级别配置,也就是作用于所有Broker load导入任务的配置。主要通过修改FE配置项来调整配置值。 max_bytes_per_broker_scanner/max_broker_concurrency max_bytes_per_broker_scanner配置限制了单个BE处理的数据量的最大值。max_broker_concurrency配置限制了一个作业的最大的导入并发数。最小处理的数据量(默认64M),最大并发数,源文件的大小和当前集群BE的个数 共同决定了本次导入的并发数。 本次导入并发数=Math.min(源文件大小/最小处理量(默认64M),最大并发数,当前BE节点个数)。 本次导入单个BE的处理量=源文件大小/本次导入的并发数。 通常一个导入作业支持的最大数据量为max_bytes_per_broker_scanner*BE节点数。如果需要导入更大数据量,则需要适当调整max_bytes_per_broker_scanner参数的大小。 默认配置: 参数名:max_broker_concurrency, 默认10。 参数名:max_bytes_per_broker_scanner,默认3G,单位bytes。
-
作业调度 系统会限制一个集群内正在运行的Broker Load作业数量,以防止同时运行过多的Load作业。 首先,FE的配置参数:desired_max_waiting_jobs会限制一个集群内未开始或正在运行(作业状态为PENDING或LOADING)的Broker Load作业数量。默认为100。如果超过这个阈值,新提交的作业将会被直接拒绝。 一个Broker Load作业会被分为pending task和loading task阶段。其中pending task负责获取导入文件的信息,而loading task会发送给BE执行具体的导入任务。 FE的配置参数async_pending_load_task_pool_size用于限制同时运行的pending task的任务数量。也相当于控制了实际正在运行的导入任务数量。该参数默认为10。也就是说,假设用户提交了100个Load作业,同时只会有10个作业会进入LOADING状态开始执行,而其他作业处于PENDING等待状态。 FE的配置参数async_loading_load_task_pool_size用于限制同时运行的loading task的任务数量。一个Broker Load作业会有1 pending task和多个loading task(等于LOAD语句中DATA INFILE子句的个数)。所以async_loading_load_task_pool_size应该大于等于async_pending_load_task_pool_size。
-
基本原理 用户在提交导入任务后,FE会生成对应的Plan并根据目前BE的个数和文件的大小,将Plan分给多个BE执行,每个BE执行一部分导入数据。 BE在执行的过程中会从Broker拉取数据,在对数据transform之后将数据导入系统。所有BE均完成导入,由FE最终决定导入是否成功。 + | 1. user create broker load v +----+----+ | | | FE | | | +----+----+ | | 2. BE etl and load the data +--------------------------+ | | | +---v---+ +--v----+ +---v---+ | | | | | | | BE | | BE | | BE | | | | | | | +---+-^-+ +---+-^-+ +--+-^--+ | | | | | | | | | | | | 3. pull data from broker +---v-+-+ +---v-+-+ +--v-+--+ | | | | | | |Broker | |Broker | |Broker | | | | | | | +---+-^-+ +---+-^-+ +---+-^-+ | | | | | | +---v-+-----------v-+----------v-+-+ | HDFS/BOS/AFS cluster | | | +----------------------------------+
-
数据模型选择 Doris数据模型上目前分为三类:AGGREGATE KEY,UNIQUE KEY,DUPLICATE KEY。三种模型中数据都是按KEY进行排序。 Aggregate模型。 Aggregate模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对count( * ) 查询很不友好。同时因为固定了Value列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。 Aggregate Key相同时,新旧记录进行聚合,目前支持的聚合函数有SUM,MIN,MAX,REPLACE。 CREATE TABLE site_visit ( siteid INT, city SMALLINT, username VARCHAR(32), pv BIGINT SUM DEFAULT '0' ) AGGREGATE KEY(siteid, city, username) DISTRIBUTED BY HASH(siteid) BUCKETS 10; Unique模型。 Unique模型针对需要唯一主键约束的场景,Unique key相同时,新记录覆盖旧记录,可以保证主键唯一性约束。适用于有更新需求的分析业务。目前Unique key实现上和Aggregate key的REPLACE聚合方法一样,二者本质上相同。但是无法利用ROLLUP等预聚合带来的查询优势(因为本质是REPLACE,没有SUM这种聚合方式)。 CREATE TABLE sales_order ( orderid BIGINT, status TINYINT, username VARCHAR(32), amount BIGINT DEFAULT '0' ) UNIQUE KEY(orderid) DISTRIBUTED BY HASH(orderid) BUCKETS 10; Duplicate模型。 Duplicate模型相同的行不会合并,适合任意维度的Ad-hoc查询。虽然无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(列裁剪、向量执行等)。 CREATE TABLE session_data ( visitorid SMALLINT, sessionid BIGINT, visittime DATETIME, city CHAR(20), province CHAR(20), ip varchar(32), brower CHAR(20), url VARCHAR(1024) ) DUPLICATE KEY(visitorid, sessionid) DISTRIBUTED BY HASH(sessionid, visitorid) BUCKETS 10;
-
大宽表与Star Schema 业务方建表时, 为了和前端业务适配, 往往不对维度信息和指标信息加以区分, 而将Schema定义成大宽表,这种操作对于数据库其实不是那么友好,我们更建议用户采用星型模型。 Schema中字段数比较多, 聚合模型中可能key列比较多, 导入过程中需要排序的列会增加。 维度信息更新会反应到整张表中,而更新的频率直接影响查询的效率。 使用过程中,建议用户尽量使用Star Schema区分维度表和指标表。频繁更新的维度表也可以放在MySQL外部表中。而如果只有少量更新, 可以直接放在Doris中。在Doris中存储维度表时,可对维度表设置更多的副本,提升Join的性能。
-
复制表结构创建表 可以通过复制表结构创建与源表具有相同结构的表。语法: CREATE TABLE [IF NOT EXISTS] [db.]table_name2 ON CLUSTER ClickHouse集群名 AS [db.]table_name1 [ENGINE = engine_name]; 表2 参数说明 参数 说明 db 数据库的名称,默认为当前选择的数据库。 table_name1 被复制表结构的源表。 table_name2 新创建的表。 ON CLUSTER ClickHouse集群名 在每一个节点上都创建一个表,固定为ON CLUSTER ClickHouse集群名。 [ENGINE = engine_name] 表引擎类型。如果没有指定表引擎,默认与被复制表结构的表相同。 示例: 创建数据库。 create database demo; 使用数据库。 use demo; 创建数据表。 create table demo_t(uid Int32,name String,age UInt32,gender String)engine = TinyLog; 复制表结构。 create table demo_t2 as demo_t; 查看表结构。
-
SELECT语句创建 使用指定的表引擎创建一个与SELECT子句的结果具有相同结构的表,并使用SELECT子句的结果进行填充。 CREATE TABLE [IF NOT EXISTS] [database_name.]table_name ENGINE = engine_name AS SELECT ... 表3 参数说明 参数 说明 database_name 数据库的名称,默认为当前选择的数据库。 table_name 通过SELECT语句创建的表。 ENGINE = engine_name() 表的引擎类型。 SELECT ... SELECT子句。 示例: 创建表。 CREATE TABLE default.demo1 ON CLUSTER default_cluster( `EventDate` DateTime, `id` UInt64)ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/default/demo1', '{replica}') PARTITION BY toYYYYMM(EventDate) ORDER BY id; 通过SELECT语句创建表。 create table t3 ON CLUSTER default_cluster ENGINE =MergeTree() order by EventDate as select * from default.demo1; 查询demo1和t3表结构。 desc demo1; 查询结果显示,两张表结构一样。 cloudtable-wlr-click-20230730-06-server-1-1 :) desc demo1; DESCRIBE TABLE demo1 Query id: 712f6b91-668d-4f70-b160-aac8e52f63a4 ┌─name──────┬─type─────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐ │ EventDate │ DateTime │ │ │ │ │ │ │ id │ UInt64 │ │ │ │ │ │ └───────────┴──────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘ 2 rows in set. Elapsed: 0.001 sec. cloudtable-wlr-click-20230730-06-server-1-1 :) desc t3; DESCRIBE TABLE t3 Query id: 11b67532-26f0-49c5-b36d-439d45c279bf ┌─name──────┬─type─────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐ │ EventDate │ DateTime │ │ │ │ │ │ │ id │ UInt64 │ │ │ │ │ │ └───────────┴──────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘ 2 rows in set. Elapsed: 0.001 sec.
-
创建本地表 CREATE TABLE [IF NOT EXISTS] [database_name.]table_name [ON CLUSTER ClickHouse集群名] ( name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1], name2[type2] [DEFAULT|MATERIALIZED|ALIAS expr2], ... ) ENGINE = engine_name() [PARTITION BY expr_list] [ORDER BY expr_list] 表1 参数说明 参数 说明 database_name 数据库的名称,默认为当前选择的数据库。 table_name 本地表名。 ON CLUSTERClickHouse集群名 在每一个节点上都创建一个本地表,固定为ON CLUSTER ClickHouse集群名。 name1,name2 列名。 ENGINE = engine_name() 表引擎类型。 双副本版集群建表时,需要使用MergeTree系列引擎中支持数据复制的Replicated*引擎,否则副本之间不进行数据复制,导致数据查询结果不一致。使用该引擎建表时,参数填写方式如下。 ReplicatedMergeTree('/clickhouse/tables/{database}/{table}/{shard}', '{replica}'),固定配置,无需修改。 ReplicatedMergeTree(),等同于ReplicatedMergeTree('/clickhouse/tables/{database}/{table}/{shard}', '{replica}')。 ORDER BY expr_list 排序键,必填项,可以是一组列的元组或任意表达式。 [PARTITION BY expr_list] 分区键。一般按照日期分区,也可以使用其他字段或字段表达式。 示例: 创建数据库。请参见CREATE DATABASE。 使用数据库。 use demo; 创建名为demo.test表。 CREATE TABLE demo.test ON CLUSTER default_cluster(`EventDate` DateTime, `id` UInt64)ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/default/test', '{replica}') PARTITION BY toYYYYMM(EventDate) ORDER BY id;
-
元数据缓存设置 创建Catalog时可以采用参数file.meta.cache.ttl-second来设置Hive分区文件缓存自动失效时间,也可以将该值设置为0来禁用分区文件缓存,时间单位为:秒。示例如下: CREATE CATA LOG hive_catalog PROPERTIES ( 'type'='hms', 'hive.metastore.uris' = 'thrift://127.x.x.x:port', 'AWS_AC CES S_KEY' = 'ak', 'AWS_SECRET_KEY' = 'sk', 'AWS_ENDPOINT' = 'obs.cn-north-4.myhuaweicloud.com', 'AWS_REGION' = 'cn-north-4', 'file.meta.cache.ttl-second' = '60', 'yarn.resourcemanager.address' = '192.X.X.X:port', 'yarn.resourcemanager.principal' = 'mapred/hadoop.hadoop.com@HADOOP.COM' );
-
Hive版本 Doris可以正确访问不同Hive版本中的Hive Metastore。在默认情况下,Doris会以Hive2.3版本的兼容接口访问Hive Metastore。你也可以在创建Catalog时指定hive的版本。如访问Hive1.1.0版本: CREATE CATALOG hive_catalog PROPERTIES ( 'type'='hms', 'hive.metastore.uris' = 'thrift://127.x.x.x:port', 'AWS_ACCESS_KEY' = 'ak', 'AWS_SECRET_KEY' = 'sk', 'AWS_ENDPOINT' = 'obs.cn-north-4.myhuaweicloud.com', 'AWS_REGION' = 'cn-north-4', 'hive.version' = '1.1.0', 'yarn.resourcemanager.address' = '192.X.X.X:port', 'yarn.resourcemanager.principal' = 'mapred/hadoop.hadoop.com@HADOOP.COM' );
-
创建hive catalog 通过连接Hive Metastore,或者兼容Hive Metastore的元数据服务,Doris可以自动获取Hive的库表信息,并进行数据查询。 除了Hive外,很多其他系统也会使用Hive Metastore存储元数据。所以通过Hive Catalog,我们不仅能访问Hive,也能访问使用Hive Metastore作为元数据存储的系统。 创建。 Hive On OBS CREATE CATALOG hive_catalog PROPERTIES ( 'type'='hms', 'hive.metastore.uris' = 'thrift://127.x.x.x:port', 'AWS_ACCESS_KEY' = 'ak', 'AWS_SECRET_KEY' = 'sk', 'AWS_ENDPOINT' = 'obs.cn-north-4.myhuaweicloud.com', 'AWS_REGION' = 'cn-north-4', 'yarn.resourcemanager.address' = '192.X.X.X:port', 'yarn.resourcemanager.principal' = 'mapred/hadoop.hadoop.com@HADOOP.COM' ); Hive On HDFS CREATE CATALOG hive_catalog PROPERTIES ( 'type'='hms', 'hive.metastore.uris' = 'thrift://127.x.x.x:port', 'dfs.nameservices'='hacluster', 'dfs.ha.namenodes.hacluster'='3,4', 'dfs.namenode.rpc-address.hacluster.3'='192.x.x.x:port', 'dfs.namenode.rpc-address.hacluster.4'='192.x.x.x:port', 'dfs.client.failover.proxy.provider.hacluster'='org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider', 'yarn.resourcemanager.address' = '192.X.X.X:port', 'yarn.resourcemanager.principal' = 'mapred/hadoop.hadoop.com@HADOOP.COM' ); 创建后查询: select * from hive_catalog.DB.test_table;
-
客户端下载RPM 以发布私有组件到RPM私有依赖库中发布的Rpm私有组件为例,介绍如何从Rpm私有依赖库中获取依赖包。 参考发布Rpm私有组件的2、3,下载Rpm私有依赖库配置文件。 打开配置文件,将文件中所有“{{component}}”替换为上传Rpm文件时使用的“{{component}}”值(本文档中该值为“hello”),并删除“rpm上传命令”部分,保存文件。 将修改后的配置文件保存到Linux主机的“/etc/yum.repos.d/”目录中。 执行以下命令,下载Rpm组件。其中,hello为组件的“component”值,请根据实际情况修改。 yum install hello
-
客户端下载Generic组件 使用以下命令进行客户端下载: curl -o {{localFileName}} -k -u "{{username}}:{{password}}" -X GET {{repo_url}}/{{filePath}} localFileName:下载Generic组件到本地的路径(包含名称)。 filePath:Generic仓库中组件的路径(包含名称)。 username、password、repo_url的值从2下载的“generic.txt”文件获取,如下图所示。
-
客户端下载Maven组件 使用客户端工具为Maven,请确保已安装JDK和Maven。 1. 从私有依赖库页面下载settings.xml文件,将下载的配置文件直接替换或按提示修改maven的settings.xml文件。 2. 使用以下命令进行客户端下载: mvn dependency:get -DremoteRepositories={repo_url} -DgroupId={groupId} -DartifactId={artifactId} -Dversion={version} -Dmaven.wagon.http.ssl.insecure=true -Dmaven.wagon.http.ssl.allowall=true -Dmaven.wagon.http.ssl.ignore.validity.dates=true
-
客户端上传RPM组件 使用linux系统和yum工具,请确保使用linux系统,且已安装yum。 检查linux下是否安装yum工具。 在linux主机中输入 rpm -qa yum 如出现如下内容 则证明机器已安装yum 登录制品仓库,进入Rpm私有依赖库。单击页面右侧“操作指导”。 在弹框中单击“下载配置文件”。 在Linux主机中执行以下命令,上传Rpm组件 curl -k -u {{user}}:{{password}} -X PUT https://{{repoUrl}}/{{component}}/{{version}}/ -T {{localFile}} 其中,“user”、“password”、“repoUrl”来源于上一步下载的配置文件中“rpm上传命令”部分。 user:位于curl -u与-X之间、“:”之前的字符串。 password:位于curl -u与-X之间、“:”之后的字符串。 repoUrl:“https://”与“/{{component}}”之间的字符串。 “component”、“version”、“localFile”来源于待上传的Rpm组件。以组件“hello-0.17.2-54.x86_64.rpm”为例。 component:软件名称,即“hello”。 version:软件版本,即“0.17.2”。 localFile:Rpm组件,即“hello-0.17.2-54.x86_64.rpm”。 完整的命令行如下图所示: 命令执行成功,进入私有依赖库,可找到已上传的Rpm私有组件。
-
客户端上传Docker组件 前提条件: 已安装Docker客户端。 私有依赖库中已创建 Docker仓库 。 操作步骤: 从私有库页面选择对应的Docker仓库,单击“操作指导”。 单击“下载配置文件”,下载配置文件“config.json”。 获取已下线的配置文件中的{username}、{password}。 在本地客户端执行以下命令,登录Docker私有依赖库。 docker login {url} -u ${username} -p ${password} url:仓库地址。 username:3中获取的{username}。 password:3中获取的{password}。 在本地客户端执行以下命令,打包镜像。 docker tag ${image_name1}:${image_version1} {url}/${image_name2}:${image_version2} image_name1:本地镜像名称。 image_version1:本地镜像版本号。 url:仓库地址。如下图所示。 image_name2:用户可以设置上传后的镜像名称,组件名称将显示在Docker私有依赖库组件列表中。 image_version2:用户可以设置上传后的镜像版本。 在本地客户端执行以下命令,上传Docker组件至私有依赖库。 docker push {url}/${image_name}:${image_version} url:仓库地址。如下图所示。 image_name:输入5中的“image_name2”。 image_version:输入5中的“image_version2”。 在Docker私有依赖库中查看已上传的组件。
-
客户端上传Generic组件 前提条件: 登录CodeArts首页。 操作步骤: 从私有依赖库页面选择对应的Generic仓库,单击“操作指导”。 在“操作指导”对话框下载配置文件“generic.txt”文件。 执行以下命令将Generic制品包上传到仓库。 curl -k -u "{{username}}:{{password}}" -X PUT {{repo_url}}/{{filePath}} -T {{localFile}} file path:待上传的Generic仓库路径(包含名称)。 localFile:本地Generic制品包的路径(包含名称)。 username、password、repo_url的值从2下载的“generic.txt”文件获取,如下图所示。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- ...
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333