华为云用户手册

  • 前提条件 已安装客户端时: 已安装HBase客户端。 当客户端所在主机不是集群中的节点时,需要在客户端所在节点的hosts文件中设置主机名和IP地址映射。主机名和IP地址请保持一一对应。 未安装HBase客户端时: Linux环境已安装JDK,版本号需要和IntelliJ IDEA导出Jar包使用的JDK版本一致。 当Linux环境所在主机不是集群中的节点时,需要在节点的hosts文件中设置主机名和IP地址映射。主机名和IP地址请保持一一对应。
  • HDFS样例工程介绍 MRS 样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下HDFS相关样例工程: 表1 HDFS相关样例工程 样例工程位置 描述 hdfs-example-normal HDFS文件操作的Java示例程序。 本工程主要给出了创建HDFS文件夹、写文件、追加文件内容、读文件和删除文件/文件夹等相关接口操作示例。 hdfs-c-example HDFS C语言开发代码样例。 本示例提供了基于C语言的HDFS文件系统连接、文件操作如创建文件、读写文件、追加文件、删除文件等。相关业务场景介绍请参见HDFS C API接口介绍。 父主题: HDFS开发指南(普通模式)
  • 功能分解 根据上述的业务场景进行功能分解,需要开发的功能点如表2所示。 表2 在HBase中开发的功能 序号 步骤 代码实现 1 根据表1中的信息创建表。 请参见创建HBase表。 2 导入用户数据。 请参见向HBase表中插入数据。 3 增加“教育信息”列族,在用户信息中新增用户的学历、职称等信息。 请参见修改HBase表。 4 根据用户编号查询用户姓名和地址。 请参见使用Get API读取HBase表数据。 5 根据用户姓名进行查询。 请参见使用Filter过滤器读取HBase表数据。 6 为提升查询性能,创建二级索引或者删除二级索引。 请参见创建HBase表二级索引和基于二级索引查询HBase表数据。 7 用户销户,删除用户信息表中该用户的数据。 请参见删除HBase表数据。 8 A业务结束后,删除用户信息表。 请参见删除HBase表。
  • 场景说明 假定用户开发一个应用程序,用于管理企业中的使用A业务的用户信息,如表1所示,A业务操作流程如下: 创建用户信息表。 在用户信息中新增用户的学历、职称等信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 查询年龄段在[20-29]之间的用户信息。 数据统计,统计用户信息表的人员数、年龄最大值、年龄最小值、平均年龄。 用户销户,删除用户信息表中该用户的数据。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 张三 男 19 广东省深圳市 12005000202 李婉婷 女 23 河北省石家庄市 12005000203 王明 男 26 浙江省宁波市 12005000204 李刚 男 18 湖北省襄阳市 12005000205 赵恩如 女 21 江西省上饶市 12005000206 陈龙 男 32 湖南省株洲市 12005000207 周微 女 29 河南省南阳市 12005000208 杨艺文 女 30 重庆市开县 12005000209 徐兵 男 26 陕西省渭南市 12005000210 肖凯 男 25 辽宁省大连市
  • 操作步骤 以客户端安装用户,登录安装HBase客户端的节点。 进入HBase客户端安装目录: 例如:cd /opt/client 执行以下命令配置环境变量。 source bigdata_env 如果当前集群已启用Kerberos认证,执行以下命令认证当前用户,当前用户需要具有创建HBase表的权限,具体请参见创建角色配置拥有对应权限的角色,参考创建用户为用户绑定对应角色。如果当前集群未启用Kerberos认证,则无需执行此命令。 kinit MRS 集群用户 例如,kinit hbaseuser。 直接执行Phoenix客户端命令。 sqlline.py 建表: CREATE TABLE TEST (id VARCHAR PRIMARY KEY, name VARCHAR); 插入数据: UPSERT INTO TEST(id,name) VALUES ('1','jamee'); 查询数据: SELECT * FROM TEST; 删表: DROP TABLE TEST; 退出Phoenix命令行。 !quit
  • 代码样例 如下是写文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 创建文件,写文件 * * @throws java.io.IOException * @throws com.huawei.bigdata.hdfs.examples.ParameterException */private void write() throws IOException { final String content = "hi, I am bigdata. It is successful if you can see me."; FSDataOutputStream out = null; try { out = fSystem.create(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG .info("success to write."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); }}
  • 注意事项 当前二级索引不支持使用SubstringComparator类定义的对象作为Filter的比较器。 例如,如下示例中的用法当前不支持: Scan scan = new Scan();filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);filterList.addFilter(new SingleColumnValueFilter(Bytes.toBytes(columnFamily), Bytes.toBytes(qualifier),CompareOperator.EQUAL, new SubstringComparator(substring)));scan.setFilter(filterList);
  • 回答 bulkload是通过启动MapReduce任务直接生成HFile文件,再将HFile文件注册到HBase,因此错误的使用bulkload会因为启动MapReduce任务而占用更多的集群内存和CPU资源,也可能会生成大量很小的HFile文件频繁的触发Compaction,导致查询速度急剧下降。 错误的使用put,会造成数据加载慢,当分配给RegionServer内存不足时会造成RegionServer内存溢出从而导致进程退出。 下面给出bulkload和put适合的场景: bulkload适合的场景: 大量数据一次性加载到HBase。 对数据加载到HBase可靠性要求不高,不需要生成WAL文件。 使用put加载大量数据到HBase速度变慢,且查询速度变慢时。 加载到HBase新生成的单个HFile文件大小接近HDFS block大小。 put适合的场景: 每次加载到单个Region的数据大小小于HDFS block大小的一半。 数据需要实时加载。 加载数据过程不会造成用户查询速度急剧下降。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testSingleColumnValueFilter方法中。 public void testSingleColumnValueFilter() { LOG.info("Entering testSingleColumnValueFilter."); Table table = null; ResultScanner rScanner = null; try { table = conn.getTable(tableName); Scan scan = new Scan(); scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name")); // Set the filter criteria. SingleColumnValueFilter filter = new SingleColumnValueFilter( Bytes.toBytes("info"), Bytes.toBytes("name"), CompareOperator.EQUAL, Bytes.toBytes("Xu Bing")); scan.setFilter(filter); // Submit a scan request. rScanner = table.getScanner(scan); // Print query results. for (Result r = rScanner.next(); r != null; r = rScanner.next()) { for (Cell cell : r.rawCells()) { LOG.info("{}:{},{},{}", Bytes.toString(CellUtil.cloneRow(cell)), Bytes.toString(CellUtil.cloneFamily(cell)), Bytes.toString(CellUtil.cloneQualifier(cell)), Bytes.toString(CellUtil.cloneValue(cell))); } } LOG.info("Single column value filter successfully."); } catch (IOException e) { LOG.error("Single column value filter failed " ,e); } finally { if (rScanner != null) { // Close the scanner object. rScanner.close(); } if (table != null) { try { // Close the HTable object. table.close(); } catch (IOException e) { LOG.error("Close table failed " ,e); } } } LOG.info("Exiting testSingleColumnValueFilter."); }
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“PhoenixSample”类的testPut方法中。 /** * Put data */ public void testPut() { LOG.info("Entering testPut."); String URL = "jdbc:phoenix:" + conf.get("hbase.zookeeper.quorum"); // Insert String upsertSQL = "UPSERT INTO TEST VALUES(1,'John','100000', TO_DATE('1980-01-01','yyyy-MM-dd'))"; try (Connection conn = DriverManager.getConnection(url, props); Statement stat = conn.createStatement()){ // Execute Update SQL stat.executeUpdate(upsertSQL); conn.commit(); LOG.info("Put successfully."); } catch (Exception e) { LOG.error("Put failed.", e); } LOG.info("Exiting testPut."); }
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testScanData方法中 public void testScanData() { LOG.info("Entering testScanData."); Table table = null; // Instantiate a ResultScanner object. ResultScanner rScanner = null; try { // Create the Configuration instance. table = conn.getTable(tableName); // Instantiate a Get object. Scan scan = new Scan(); scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name")); // Set the cache size. scan.setCaching(1000); // Submit a scan request. rScanner = table.getScanner(scan); // Print query results. for (Result r = rScanner.next(); r != null; r = rScanner.next()) { for (Cell cell : r.rawCells()) { LOG.info("{}:{},{},{}", Bytes.toString(CellUtil.cloneRow(cell)), Bytes.toString(CellUtil.cloneFamily(cell)), Bytes.toString(CellUtil.cloneQualifier(cell)), Bytes.toString(CellUtil.cloneValue(cell))); } } LOG.info("Scan data successfully."); } catch (IOException e) { LOG.error("Scan data failed " ,e); } finally { if (rScanner != null) { // Close the scanner object. rScanner.close(); } if (table != null) { try { // Close the HTable object. table.close(); } catch (IOException e) { LOG.error("Close table failed " ,e); } } } LOG.info("Exiting testScanData."); }
  • 准备本地应用开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 用于开发HBase应用程序的工具。版本要求:2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 安装Junit插件 开发环境的基本配置。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 华为提供开源镜像站,各服务样例工程依赖的Jar包通过华为开源镜像站下载,剩余所依赖的开源Jar包请直接从Maven中央库或者其他用户自定义的仓库地址下载,详情请参考配置华为开源镜像仓。 7-zip 用于解压“*.zip”和“*.rar”文件。 支持7-Zip 16.04版本。 父主题: 准备HBase应用开发环境
  • 问题 Flink内核升级到1.3.0之后,当Kafka调用带有非static的KafkaPartitioner类对象为参数的FlinkKafkaProducer010去构造函数时,运行时会报错。 报错内容如下: org.apache.flink.api.common.InvalidProgramException: The implementation of the FlinkKafkaPartitioner is not serializable. The object probably contains or references non serializable fields.
  • 回答 建议将"blob.storage.directory"配置选项设置成“/tmp”或者“/opt/huawei/Bigdata/tmp”。 当用户将"blob.storage.directory"配置选项设置成自定义目录时,需要手动赋予用户该目录的owner权限。以下以 FusionInsight 的admin用户为例。 修改Flink客户端配置文件conf/flink-conf.yaml,配置blob.storage.directory: /home/testdir/testdirdir/xxx。 创建目录/home/testdir(创建一层目录即可),设置该目录为admin用户所属。 图1 创建目录 /home/testdir/下的testdirdir/xxx目录在启动Flink集群时会在每个节点下自动创建。 进入客户端路径,执行命令./bin/yarn-session.sh -jm 2048 -tm 3072,可以看到yarn-session正常启动并且成功创建目录。 图2 执行命令
  • 开发思路 数据准备。 创建三张表,雇员信息表“employees_info”、雇员联络信息表“employees_contact”、雇员信息扩展表“employees_info_extended”。 雇员信息表“employees_info”的字段为雇员编号、姓名、支付薪水币种、薪水金额、缴税税种、工作地、入职时间,其中支付薪水币种“R”代表人民币,“D”代表美元。 雇员联络信息表“employees_contact”的字段为雇员编号、电话号码、e-mail。 雇员信息扩展表“employees_info_extended”的字段为雇员编号、姓名、电话号码、e-mail、支付薪水币种、薪水金额、缴税税种、工作地,分区字段为入职时间。 创建表代码实现请见创建Hive表。 加载雇员信息数据到雇员信息表“employees_info”中。 加载数据代码实现请见加载数据到Hive表中。 雇员信息数据如表1所示: 表1 雇员信息数据 编号 姓名 支付薪水币种 薪水金额 缴税税种 工作地 入职时间 1 Wang R 8000.01 personal income tax&0.05 Country1:City1 2014 3 Tom D 12000.02 personal income tax&0.09 Country2:City2 2014 4 Jack D 24000.03 personal income tax&0.09 Country3:City3 2014 6 Linda D 36000.04 personal income tax&0.09 Country4:City4 2014 8 Zhang R 9000.05 personal income tax&0.05 Country5:City5 2014 加载雇员联络信息数据到雇员联络信息表“employees_contact”中。 雇员联络信息数据如表2所示: 表2 雇员联络信息数据 编号 电话号码 e-mail 1 135 XXXX XXXX xxxx@xx.com 3 159 XXXX XXXX xxxxx@xx.com.cn 4 186 XXXX XXXX xxxx@xx.org 6 189 XXXX XXXX xxxx@xxx.cn 8 134 XXXX XXXX xxxx@xxxx.cn 加载雇员扩展信息数据到雇员联络信息表“employees_info_extended”中。 雇员扩展信息数据如表3所示: 表3 雇员扩展信息数据 编号 姓名 电话号码 e-mail 支付薪水币种 薪水金额 缴税税种 工作地 入职时间 1 Wang 135 XXXX XXXX xxxx@xx.com R 8000.01 personal income tax&0.05 Country1:City1 2014 3 Tom 159 XXXX XXXX xxxxx@xx.com.cn D 12000.02 personal income tax&0.09 Country2:City2 2014 4 Jack 186 XXXX XXXX xxxx@xx.org D 24000.03 personal income tax&0.09 Country3:City3 2014 6 Linda 189 XXXX XXXX xxxx@xxx.cn D 36000.04 personal income tax&0.09 Country4:City4 2014 8 Zhang 134 XXXX XXXX xxxx@xxxx.cn R 9000.05 personal income tax&0.05 Country5:City5 2014 数据分析。 数据分析代码实现,请见查询Hive表数据。 查看薪水支付币种为美元的雇员联系方式。 查询入职时间为2014年的雇员编号、姓名等字段,并将查询结果加载进表employees_info_extended中的入职时间为2014的分区中。 统计表employees_info中有多少条记录。 查询使用以“cn”结尾的邮箱的员工信息。 提交数据分析任务,统计表employees_info中有多少条记录。实现请参见使用JDBC接口提交数据分析任务。
  • 代码样例 如下是读文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 读文件 * * @throws java.io.IOException */private void read() throws IOException { String strPath = DEST_PATH + File.separator + FILE_NAME; Path path = new Path(strPath); FSDataInputStream in = null; BufferedReader reader = null; StringBuffer strBuffer = new StringBuffer(); try { in = fSystem.open(path); reader = new BufferedReader(new InputStreamReader(in)); String sTempOneLine; // write file while ((sTempOneLine = reader.readLine()) != null) { strBuffer.append(sTempOneLine); } LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed finally. IOUtils.closeStream(reader); IOUtils.closeStream(in); }}
  • 开发思路 根据前述场景说明进行功能分解,以“/user/hdfs-examples/test.txt”文件的读写删除等操作为例,说明HDFS文件的基本操作流程,可分为以下八部分: 创建FileSystem对象:fSystem。 调用fSystem的mkdir接口创建目录。 调用fSystem的create接口创建FSDataOutputStream对象:out,使用out的write方法写入数据。 调用fSystem的append接口创建FSDataOutputStream对象:out,使用out的write方法追加写入数据。 调用fSystem的open接口创建FSDataInputStream对象:in,使用in的read方法读取文件。 调用fSystem中的delete接口删除文件。 调用fSystem中的delete接口删除文件夹。
  • HBase应用开发流程 本文档主要基于Java API对HBase进行应用开发。 开发流程中各阶段的说明如图1和表1所示。 图1 HBase应用程序开发流程 表1 HBase应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括集群组件信息文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接HBase集群配置文件 配置并导入样例工程 HBase提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置HBase样例工程 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发HBase应用 编译并运行程序 开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 调测HBase应用 父主题: HBase应用开发概述
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“PhoenixSample”类的testSelect方法中。 /** * Select Data */ public void testSelect() { LOG.info("Entering testSelect."); String URL = "jdbc:phoenix:" + conf.get("hbase.zookeeper.quorum"); // Query String querySQL = "SELECT * FROM TEST WHERE id = ?"; Connection conn = null; PreparedStatement preStat = null; Statement stat = null; ResultSet result = null; try { // Create Connection conn = DriverManager.getConnection(url, props); // Create Statement stat = conn.createStatement(); // Create PrepareStatement preStat = conn.prepareStatement(querySQL); // Execute query preStat.setInt(1, 1); result = preStat.executeQuery(); // Get result while (result.next()) { int id = result.getInt("id"); String name = result.getString(1); System.out.println("id: " + id); System.out.println("name: " + name); } LOG.info("Select successfully."); } catch (Exception e) { LOG.error("Select failed.", e); } finally { if (null != result) { try { result.close(); } catch (Exception e2) { LOG.error("Result close failed.", e2); } } if (null != stat) { try { stat.close(); } catch (Exception e2) { LOG.error("Stat close failed.", e2); } } if (null != conn) { try { conn.close(); } catch (Exception e2) { LOG.error("Connection close failed.", e2); } } } LOG.info("Exiting testSelect."); }
  • 代码样例 下面代码片段在com.huawei.hadoop.hbase.example包的“HBaseSample”类的testScanDataByIndex方法中: 样例:使用二级索引查找数据 public void testScanDataByIndex() { LOG.info("Entering testScanDataByIndex."); Table table = null; ResultScanner scanner = null; try { table = conn.getTable(tableName); // Create a filter for indexed column. Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("name"), CompareOperator.EQUAL, "Li Gang".getBytes()); Scan scan = new Scan(); scan.setFilter(filter); scanner = table.getScanner(scan); LOG.info("Scan indexed data."); for (Result result : scanner) { for (Cell cell : result.rawCells()) { LOG.info("{}:{},{},{}", Bytes.toString(CellUtil.cloneRow(cell)), Bytes.toString(CellUtil.cloneFamily(cell)), Bytes.toString(CellUtil.cloneQualifier(cell)), Bytes.toString(CellUtil.cloneValue(cell))); } } LOG.info("Scan data by index successfully."); } catch (IOException e) { LOG.error("Scan data by index failed."); } finally { if (scanner != null) { // Close the scanner object. scanner.close(); } try { if (table != null) { table.close(); } } catch (IOException e) { LOG.error("Close table failed."); } } LOG.info("Exiting testScanDataByIndex."); }
  • 功能介绍 针对添加了二级索引的用户表,您可以通过Filter来查询数据。其数据查询性能高于针对无二级索引用户表的数据查询。 HIndex支持的Filter类型为“SingleColumnValueFilter”,“SingleColumnValueExcludeFilter”以及“SingleColumnValuePartitionFilter”。 HIndex支持的Comparator为“BinaryComparator”,“BitComparator”,“LongComparator”,“DecimalComparator”,“DoubleComparator”,“FloatComparator”,“IntComparator”,“NullComparator”。 二级索引的使用规则如下: 针对某一列或者多列创建了单索引的场景下: 当查询时使用此列进行过滤时,不管是AND还是OR操作,该索引都会被利用来提升查询性能。 例如:Filter_Condition(IndexCol1) AND/OR Filter_Condition(IndexCol2) 当查询时使用“索引列AND非索引列”过滤时,此索引会被利用来提升查询性能。 例如:Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol2) AND Filter_Condition(NonIndexCol1) 当查询时使用“索引列OR非索引列”过滤时,此索引将不会被使用,查询性能不会因为索引得到提升。 例如:Filter_Condition(IndexCol1) AND/OR Filter_Condition(IndexCol2) OR Filter_Condition(NonIndexCol1) 针对多个列创建的联合索引场景下: 当查询时使用的列(多个),是联合索引所有对应列的一部分或者全部,且列的顺序与联合索引一致时,此索引会被利用来提升查询性能。 例如,针对C1、C2、C3列创建了联合索引,生效的场景包括: Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol2) AND Filter_Condition(IndexCol3) Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol2) Filter_Condition(IndexCol1) 不生效的场景包括: Filter_Condition(IndexCol2) AND Filter_Condition(IndexCol3) Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol3) Filter_Condition(IndexCol2) Filter_Condition(IndexCol3) 当查询时使用“索引列AND非索引列”过滤时,此索引会被利用来提升查询性能。 例如: Filter_Condition(IndexCol1) AND Filter_Condition(NonIndexCol1) Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol2) AND Filter_Condition(NonIndexCol1) 当查询时使用“索引列OR非索引列”过滤时,此索引不会被使用,查询性能不会因为索引得到提升。 例如: Filter_Condition(IndexCol1) OR Filter_Condition(NonIndexCol1) (Filter_Condition(IndexCol1) AND Filter_Condition(IndexCol2))OR ( Filter_Condition(NonIndexCol1)) 当查询时使用多个列进行范围查询时,只有联合索引中最后一个列可指定取值范围,前面的列只能设置为“=”。 例如:针对C1、C2、C3列创建了联合索引,需要进行范围查询时,只能针对C3设置取值范围,过滤条件为“C1=XXX,C2=XXX,C3=取值范围”。 针对添加了二级索引的用户表,可以通过Filter来查询数据,在单列索引和复合列索引上进行过滤查询,查询结果都与无索引结果相同,且其数据查询性能高于无二级索引用户表的数据查询性能。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的dropTable方法中 public void dropTable() { LOG.info("Entering dropTable."); Admin admin = null; try { admin = conn.getAdmin(); if (admin.tableExists(tableName)) { // Disable the table before deleting it. admin.disableTable(tableName); // Delete table. admin.deleteTable(tableName);//注[1] } LOG.info("Drop table successfully."); } catch (IOException e) { LOG.error("Drop table failed " ,e); } finally { if (admin != null) { try { // Close the Admin object. admin.close(); } catch (IOException e) { LOG.error("Close admin failed " ,e); } } } LOG.info("Exiting dropTable."); }
  • Hive应用开发流程 开发流程中各阶段的说明如图1和表1所示。 图1 Hive应用程序开发流程 表1 Hive应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括集群组件信息文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Hive集群配置文件 配置并导入样例工程 Hive提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置Hive样例工程 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发Hive应用 编译并运行程序 开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 调测Hive应用 父主题: Hive应用开发概述
  • 基于API的Glob路径模式以获取LocatedFileStatus和从FileStatus打开文件 在DistributedFileSystem中添加了以下API,以获取具有块位置的FileStatus,并从FileStatus对象打开文件。这些API将减少从客户端到Namenode的RPC调用的数量。 表6 FileSystem API接口说明 Interface接口 Description说明 public LocatedFileStatus[] globLocatedStatus(Path, PathFilter, boolean) throws IOException 返回一个LocatedFileStatus对象数组,其对应文件路径符合路径过滤规则。 public FSDataInputStream open(FileStatus stat) throws IOException 如果stat对象是LocatedFileStatusHdfs的实例,该实例已具有位置信息,则直接创建InputStream而不联系Namenode。
  • 注意事项 注[1] 可以设置列族的压缩方式,代码片段如下: //设置编码算法,HBase提供了DIFF,FAST_DIFF,PREFIX三种编码算法 hcd.setDataBlockEncoding(DataBlockEncoding.FAST_DIFF); //设置文件压缩方式,HBase默认提供了GZ和SNAPPY两种压缩算法 //其中GZ的压缩率高,但压缩和解压性能低,适用于冷数据 //SNAPPY压缩率低,但压缩解压性能高,适用于热数据 //建议默认开启SNAPPY压缩 hcd.setCompressionType(Compression.Algorithm.SNAPPY); 注[2] 可以通过指定起始和结束RowKey,或者通过RowKey数组预分Region两种方式建表,代码片段如下: // 创建一个预划分region的表 byte[][] splits = new byte[4][]; splits[0] = Bytes.toBytes("A"); splits[1] = Bytes.toBytes("H"); splits[2] = Bytes.toBytes("O"); splits[3] = Bytes.toBytes("U"); admin.createTable(htd, splits);
  • HBase应用开发常用概念 过滤器 过滤器用于帮助用户提高HBase处理表中数据的效率。用户不仅可以使用HBase中预定义好的过滤器,而且可以实现自定义的过滤器。 协处理器 允许用户执行region级的操作,并且可以使用与RDBMS中触发器类似的功能。 Client 客户端直接面向用户,可通过Java API、HBase Shell或者Web UI访问服务端,对HBase的表进行读写操作。本文中的HBase客户端特指HBase client的安装包,可参考HBase对外接口介绍。 父主题: HBase应用开发概述
  • 代码样例 以下代码片段是登录,创建Connection并创建表的示例,在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的HBaseSample方法中。 private TableName tableName = null; private Connection conn = null; public HBaseSample(Configuration conf) throws IOException { this.tableName = TableName.valueOf("hbase_sample_table"); this.conn = ConnectionFactory.createConnection(conf);}
  • 功能简介 HBase通过org.apache.hadoop.hbase.client.Admin对象的createTable方法来创建表,并指定表名、列族名。创建表有两种方式(强烈建议采用预分Region建表方式): 快速建表,即创建表后整张表只有一个Region,随着数据量的增加会自动分裂成多个Region。 预分Region建表,即创建表时预先分配多个Region,此种方法建表可以提高写入大量数据初期的数据写入速度。 表的列名以及列族名不能包含特殊字符,可以由字母、数字以及下划线组成。
  • 功能介绍 HBase通过ConnectionFactory.createConnection(configuration)方法创建Connection对象。传递的参数为上一步创建的Configuration。 Connection封装了底层与各实际服务器的连接以及与ZooKeeper的连接。Connection通过ConnectionFactory类实例化。创建Connection是重量级操作,Connection是线程安全的,因此,多个客户端线程可以共享一个Connection。 典型的用法,一个客户端程序共享一个单独的Connection,每一个线程获取自己的Admin或Table实例,然后调用Admin对象或Table对象提供的操作接口。不建议缓存或者池化Table、Admin。Connection的生命周期由调用者维护,调用者通过调用close(),释放资源。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testGet方法中 public void testGet() { LOG.info("Entering testGet."); // Specify the column family name. byte[] familyName = Bytes.toBytes("info"); // Specify the column name. byte[][] qualifier = { Bytes.toBytes("name"), Bytes.toBytes("address") }; // Specify RowKey. byte[] rowKey = Bytes.toBytes("012005000201"); Table table = null; try { // Create the Table instance. table = conn.getTable(tableName); // Instantiate a Get object. Get get = new Get(rowKey); // Set the column family name and column name. get.addColumn(familyName, qualifier[0]); get.addColumn(familyName, qualifier[1]); // Submit a get request. Result result = table.get(get); // Print query results. for (Cell cell : result.rawCells()) { LOG.info("{}:{},{},{}", Bytes.toString(CellUtil.cloneRow(cell)), Bytes.toString(CellUtil.cloneFamily(cell)), Bytes.toString(CellUtil.cloneQualifier(cell)), Bytes.toString(CellUtil.cloneValue(cell))); } LOG.info("Get data successfully."); } catch (IOException e) { LOG.error("Get data failed " ,e); } finally { if (table != null) { try { // Close the HTable object. table.close(); } catch (IOException e) { LOG.error("Close table failed " ,e); } } } LOG.info("Exiting testGet."); }
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全