华为云用户手册

  • 常见APP认证报错分析 报错信息 "error_msg": "The API does not exist or has not been published in the environment", "error_code": "APIG.0101" 该报错需要检查App认证API是否还存在或者URL是否正确。 报错信息 "error_msg": "Incorrect app authentication information: app not found with specified appCode", "error_code": "APIG.0303" 该报错需要检查请求头Headers参数中X-Apig-AppCode参数的值是否填错。 报错信息 "error_msg": "Backend unavailable", "error_code": "APIG.0202" 该报错信息需要检查dispatcher实例是否正常。
  • 场景描述 APPcode认证是一种简易的API调用认证方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。在ModelArts中,支持在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。
  • 镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240606190017-b881580 CANN:cann_8.0.rc2 PyTorch:2.1.0
  • Step2 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_2_ascend:pytorch_2.2.0-cann_8.0.rc3-py_3.10-hce_2.0.2406-aarch64-snt9b-20240910150953-6faa0ed 表2 模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.2.0
  • 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 步骤三 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如llamafactory。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如: chmod -R 777 /home/ma-user/ws 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 使用ma-user用户安装依赖包。 #进入scripts目录换 cd /home/ma-user/ws/llm_train/LLaMAFactory #执行安装命令,安装依赖包及/LLaMAFactory代码包 sh install.sh
  • 投机推理benchmark验证 本章节介绍如何进行投机推理benchmark验证,当前投机推理benchmark仅支持在Notebook中进行测试。 进入benchmark_tools目录下。 cd benchmark_tools 运行验证脚本speculative_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python speculative_benchmark_parallel.py --backend vllm --host ${docker_ip} --port 8080 --dataset human-eval-v2-20210705.jsonl \ --tokenizer /path/to/tokenizer --num-prompts 80 \ --output_len 4096 --trust-remote-code --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.jsonl数据集,数据集可从https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz下载压缩包解压获得。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --num-prompts:某个频率下请求数,默认80。 --output_len:输出长度,默认是1024。 --trust-remote-code:是否相信远程代码。 脚本运行完后,测试结果直接在终端输出。
  • 约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。 同步请求时,平台每次请求预测的时间不能超过60秒。例如输出数据比较大的调用请求(例如输出大于1k),请求预测会超过60秒导致调用失败,可提交工单设置请求超时时间。
  • 动态benchmark 获取测试数据集。 动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_serving.py --backend vllm --host 127.0.0.1 --port 8080 --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv 生产环境中进行测试: python benchmark_serving.py --backend vllm --url xxx --app-code xxx --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图3 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是huggingface的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图4 动态benchmark测试结果(示意图)
  • 静态benchmark 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_parallel.py --backend vllm --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 生产环境中进行测试: python benchmark_parallel.py --backend vllm --url xxx --app-code xxx --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 参数说明: --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --epochs:测试轮数,默认取值为5。 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图2 静态benchmark测试结果(示意图)
  • benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt
  • Ascend-vLLM支持的特性介绍 表1 Ascend-vLLM支持的特性 特性名称 特性说明 调度 Page-attention 分块管理kvcache,提升吞吐。 Continuous batching 迭代级调度,动态调整batch,降低延迟,提升吞吐。 Multi-step 一次调度多次推理,降低调度上的cpu-overhead。 量化 W4A16-AWQ、GPTQ 权重Int4量化,降低显存消耗和时延。小并发时延提升80%,精度损失2%以内。 W8A8-smoothQuant 权重Int8量化,降低显存消耗,吞吐提升30%;精度损失1.5%以内。 W8A16-GPTQ Int8量化,降低显存消耗,提高吞吐20%。精度损失1%以内。 Kv8 Kv-cache量化,提高吞吐,支持更长序列。 高效解码 Auto-prefix-caching 前缀缓存,降低首token时延。在system prompt较长或多轮对话场景收益明显 Chunked-prefill 又名split-fuse。全量增量同时推理,提高资源利用率,提升吞吐。 Speculative Decoding 支持大小模型投机推理和eager模式投机,提升推理性能。 图模式 Cuda-graph/cann-graph 记录算子执行的依赖关系构图;消除python host耗时;且支持动态shape。 Torch.compile Torch.dynamo构图,转ascend-GE后端推理;使用静态分档。 实例复用 Multi-lora 多lora挂载,多个不同微调模型共用一份权重同时部署。 控制输出 Guided Decoding 通过特定模式控制模型输出。 Beam search 通过beamsearch输出多个候选结果。 分离部署 PD分离部署 全量、增量分离部署,提高资源利用率,提升体验。 剪枝 FASP (Fast and Accurate Structured Pruning) 剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
  • 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。 吞吐量(tokens/s/p):global batch size*seq_length/(总卡数*elapsed time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图)
  • CCE集群关联SFS Turbo 进入已购买创建的CCE集群,选择存储,随后单击“创建存储卷声明PVC”。 选择“极速文件存储”,随后输入PVC名称。 选择“新建存储卷PV”,并单击“选择极速文件存储”。 进入选择页面,选择已经创建好的SFS Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图: 挂载完成后,可通过以下步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。
  • 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统前提条件: 创建SFS Turbo文件系统前,确认已有可用的VPC。 图4 创建SFS Turbo 需要由 IAM 用户设置SFS Turbo FullAccess权限,用于授权ModelArts云服务使用SFS Turbo。 详细操作指导请参考创建SFS Turbo文件系统。 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图5 SFS类型和容量选择
  • kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的 CCE 集群控制版面中。根据图1的步骤进行操作,单击kubectl配置时,会弹出图2步骤页面。 图1 配置中心 根据图2,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图2 kubectl 访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。若显示如图图3的内容,则配置成功。 kubectl cluster-info 图3 查看 Kubernetes 集群信息正确弹出内容
  • 准备工作 完成准备工作内容,生成benchmark-cli工具。 解压版本包data.tgz:测试样例数据;比如工作目录为:/homa/ma-user/LLaMAFactory # 将默认数据解压config同级目录 tar -zxvf ./benchmark/data.tgz ./benchmark/ 创建test-benchmark目录,该目录存放训练生成的权重文件及训练日志。 # 任意目录创建 mkdir test-benchmark 修改yaml文件参数中model_name_or_path、dataset_dir和dataset或eval_dataset参数配置,修改代码目录下accuracy_cfgs.yaml或performance_cfgs.yaml文件内容,参数详解可参考表1。 # 默认参数;根据自己实际要求修改 ## accuracy_cfgs.yaml、performance_cfgs.yaml dataset_dir: /xxxx/benchmark/data/dataset dataset: gsm8k_train_alpaca model_name_or_path: /data/wulan1/model/qwen2.5-7b ## accuracy_cfgs.yaml eval_dataset: gsm8k_test 样例yaml配置文件结构分为 base块:基础配置块 ModelName块:该模型所需配置的参数,如qwen2.5-7b块 样例截图如下: 开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。
  • 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4.3_unfiltered_cleaned_split.json 否则使用第二步生成的开源数据集。 python allocation.py \ --outdir outdir0/sharegpt_0_99_mufp16 \ --end_num 100 \ --used_npus "0,1,2,3,4,5,6,7" \ --model_type llama \ --model_name ./llama-7B \ --data_path data_for_sharegpt.json \ --seed 42 \ --max_length 2048 \ --dtype bfloat16 其中 outdir:生成的训练data 地址 end_num:生成的data总条数 used_npus:使用哪些NPU model_type:使用模型类型 目前支持 qwen2 llama1 llama2 及 llama3,其中llama1、2及chat都填写llama model_name:模型地址 data_path:预训练数据集地址 即一中生成的文件地址 seed:生成训练data所使用的seed(此处42为开源训练设定参数) max_length:模型的max_length dtype:为模型dtype 默认为bfloat16
  • 步骤四:执行训练 安装完成后,执行: accelerate launch -m --mixed_precision=bf16 eagle.train.main \ --tmpdir [path of data] \ --cpdir [path of checkpoints] \ --configpath [path of config file] \ --basepath [path of base_model] --bs [batch size] tmpdir:即为步骤三中的outdir,训练data地址 cpdir:为训练生成权重的地址 configpath:为模型config文件的地址 basepath:为大模型权重地址 bs:为batch大小 其中,要获取模型config文件, 首先到https://github.com/SafeAILab/EAGLE/页找到对应eagle模型地址。 图1 EAGLE Weights 以llama2-chat-7B为例,单击进入后 ,如下图所示config文件,即为对应模型的eagle config文件。 图2 eagle config文件
  • 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction \ --input_name input \ --output_name output \ --code_type utf-8 其中: input_file_path:预训练json文件地址。 out_file_name:输出的sharegpt格式文件地址。 prefix_name:预训练json文件的前缀 字段名称 (可设置为None,此时预训练数据集只有 input output 两段)输入前缀,(例如:您是一个xxx专家,您需要回答下面问题) input_name:预训练json文件的指令输入 字段名称(例如:请问苹果是什么颜色) output_name output:预训练json文件的output字段名称,例如:苹果是红色的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。
  • 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 --base-path:为大模型权重地址,例如 ./llama2-7b-chat --draft-path:小模型权重地址,即步骤四中config文件所在目录,例如 ./eagle_llama2-7b-chat --base-weight-name:为大模型包含lm_head的权重文件名,可以在base-path目录下的model.safetensors.index.json文件获取,例如llama2-7b-chat的权重名为pytorch_model-00001-of-00002.bin 图3 权重文件名 --draft-weight-name为小模型权重文件名,即刚才移动的.bin文件或者.safetensors 文件。
  • 步骤2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendSpeed/training_data/alpaca_gpt4_data.json 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendSpeed/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 对于ChatGLMv3-6B、ChatGLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。
  • 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 本文档适用于仅使用OBS 对象存储服务 (Object Storage Service)作为存储的方案,OBS用于存储模型文件、训练数据、代码、日志等,提供了高可靠性的数据存储解决方案。
  • 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
  • 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVI CES =0,1
  • 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto,tensor_parallel_size=${tensor_parallel_size},gpu_memory_utilization=${gpu_memory_utilization},add_bos_token=True,max_model_len=${max_model_len},quantization=${quantization} \ --tasks ${task} --batch_size ${batch_size} --log_samples --cache_requests true --trust_remote_code --output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数; quantization是量化参数,使用非量化权重,去掉quantization参数;如果使用awq、smoothquant或者gptq加载的量化权重,根据量化方式选择对应参数,可选awq,smoothquant,gptq。 model:模型启动模式,可选vllm,openai或hf,hf代表huggingface。 tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer/Llama-3.2-1B-Instruct/",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096 \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./ 使用lm-eval,比如smoothquant量化,llama3.1-70b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer_w8a8/llama3.1-70b/",dtype=auto,tensor_parallel_size=4,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096,quantization="smoothquant" \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./
  • Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 如果镜像使用E CS 中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动任何参数。
  • Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/work/models/llama-2-13b-chat-hf 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/work/tokenizers/llama-2-13b-chat-hf 可添加。该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEIGHT路径相同。如果用户需要将Hugging Face权重与tokenizer文件分开存放时,则需要修改参数。 INPUT_PROCESSED_DIR /home/ma-user/work/llm_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/work/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、P LOG 、LOG 文件。示例中,默认统一保存在“saved_dir_for_output”文件夹下。如果用户需要修改,可添加并自定义该变量。 CKPT_SAVE_PATH /home/ma-user/work/llm_train/saved_dir_for_output/saved_models/llama2-13b 保存训练生成的模型 CKPT 文件。示例中,默认保存在“saved_dir_for_output/saved_models”文件夹下。如果用户需要修改,可添加并自定义该变量。 LOG_SAVE_PATH /home/ma-user/work/llm_train/saved_dir_for_output/saved_models/llama2-13b/log 保存训练过程记录的日志 LOG 文件。示例中,默认保存在“saved_models/llama2-13b/log”文件夹下。如果用户需要修改,可添加并自定义该变量。 ASCEND_PROCESS_LOG_PATH /home/ma-user/work/llm_train/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全