华为云用户手册
-
窗口函数简介 Apache Flink 提供3个内置的窗口表值函数:TUMBLE,HOP 和 CUMULATE。 窗口表值函数的返回值包括原生列和附加的三个指定窗口的列,分别是:“window_start”,“window_end”,“window_time”。 在批计算模式,window_time 是 TIMESTAMP 或者 TIMESTAMP_LTZ 类型(具体哪种类型取决于输入的时间字段类型)的字段。 window_time 字段用于后续基于时间的操作,例如:其他的窗口表值函数,或者interval joins,over aggregations。 它的值总是等于 window_end - 1ms。
-
累积窗口(CUMULATE) 功能描述 累积窗口在某些场景中非常有用,比如说提前触发的滚动窗口。例如:每日仪表盘从 00:00 开始每分钟绘制累积 UV,10:00 时 UV 就是从 00:00 到 10:00 的UV 总数。累积窗口可以简单且有效地实现它。 CUMULATE 函数指定元素到多个窗口,从初始的窗口开始,直到达到最大的窗口大小的窗口,所有的窗口都包含其区间内的元素,另外,窗口的开始时间是固定的。 您可以将 CUMULATE 函数视为首先应用具有最大窗口大小的 TUMBLE 窗口,然后将每个滚动窗口拆分为具有相同窗口开始但窗口结束步长不同的几个窗口。 所以累积窗口会产生重叠并且没有固定大小。 例如:1小时步长,24小时大小的累计窗口,每天可以获得如下这些窗口:[00:00, 01:00),[00:00, 02:00),[00:00, 03:00), …, [00:00, 24:00) 图3 累积窗口示例图
-
OVER WINDOW Over Window与Group Window区别在于Over window每一行都会输出一条记录。 语法格式 1 2 3 4 5 6 7 8 9 10 11 SELECT agg1(attr1) OVER ( [PARTITION BY partition_name] ORDER BY proctime|rowtime ROWS BETWEEN (UNBOUNDED|rowCOUNT) PRECEDING AND CURRENT ROW FROM TABLENAME SELECT agg1(attr1) OVER ( [PARTITION BY partition_name] ORDER BY proctime|rowtime RANGE BETWEEN (UNBOUNDED|timeInterval) PRECEDING AND CURRENT ROW FROM TABLENAME 语法说明 表5 参数说明 参数 参数说明 PARTITION BY 指定分组的主键,每个分组各自进行计算。 ORDER BY 指定数据按processing time或event time作为时间戳。 ROWS 个数窗口。 RANGE 时间窗口。 注意事项 所有的聚合必须定义到同一个窗口中,即相同的分区、排序和区间。 当前仅支持 PRECEDING (无界或有界) 到 CURRENT ROW 范围内的窗口、FOLLOWING 所描述的区间并未支持。 ORDER BY 必须指定于单个的时间属性。 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 // 计算从规则启动到目前为止的计数及总和(in proctime) insert into temp SELECT name, count(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as cnt1, sum(amount) OVER (PARTITION BY name ORDER BY proctime RANGE UNBOUNDED preceding) as cnt2 FROM Orders; // 计算最近四条记录的计数及总和(in proctime) insert into temp SELECT name, count(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) as cnt1, sum(amount) OVER (PARTITION BY name ORDER BY proctime ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) as cnt2 FROM Orders; // 计算最近60s的计数及总和(in eventtime),基于事件时间处理,事件时间为Orders中的timeattr字段。 insert into temp SELECT name, count(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60' SECOND PRECEDING AND CURRENT ROW) as cnt1, sum(amount) OVER (PARTITION BY name ORDER BY timeattr RANGE BETWEEN INTERVAL '60' SECOND PRECEDING AND CURRENT ROW) as cnt2 FROM Orders;
-
TUMBLE WINDOW扩展 功能描述 DLI TUMBLE函数功能增强主要包括以下功能: TUMBLE窗口周期性触发,控制延迟 TUMBLE窗口结束之前,可以根据设置的触发频率周期性地触发窗口,输出从窗口开始时间到当前周期时间窗口内的计算结果值,但不影响最终窗口输出值,从而在窗口结束前的每个周期都可以看到最新的结果。 提高数据的精确性 在窗口结束后,允许设置延迟时间。根据设置的延迟时间,每到达一个迟到数据,则更新窗口的输出结果 注意事项 如果使用insert语句将结果写入sink中,则sink需要支持upsert模式,所以结果表需要支持upsert操作,且定义主键。 延迟时间设置仅用于事件时间,在处理时间中不生效。 辅助函数必须使用与 GROUP BY 子句中的分组窗口函数完全相同的参数来调用。 如果使用事件时间,则需要使用watermark标识,代码如下(其中order_time被标识为事件时间列,watermark时间设置为3秒): CREATE TABLE orders ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, watermark for order_time as order_time - INTERVAL '3' SECOND ) WITH ( 'connector' = 'kafka', 'topic' = 'kafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'format' = 'json' ); 如果使用处理时间,则需要使用计算列设置,其代码如下(其中proc即为处理时间列): CREATE TABLE orders ( order_id string, order_channel string, order_time timestamp(3), pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, proc as proctime() ) WITH ( 'connector' = 'kafka', 'topic' = 'kafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'format' = 'json' ); 语法格式 TUMBLE(time_attr, window_interval, period_interval, lateness_interval) 语法示例 例如当前time_attr属性列为:testtime,窗口时间间隔为10秒,设置延迟时间为10秒语法示例为: TUMBLE(testtime, INTERVAL '10' SECOND, INTERVAL '10' SECOND, INTERVAL '10' SECOND)
-
GROUP WINDOW 语法说明 Group Window定义在GROUP BY里,每个分组只输出一条记录,包括以下几种: 分组函数 在流处理表中的 SQL 查询中,分组窗口函数的 time_attr 参数必须引用一个合法的时间属性,且该属性需要指定行的处理时间或事件时间。 time_attr设置为event-time时参数类型为timestamp(3)类型。 time_attr设置为processing-time时无需指定类型。 对于批处理的 SQL 查询,分组窗口函数的 time_attr 参数必须是一个timestamp类型的属性。 表1 分组函数表 分组窗口函数 说明 TUMBLE(time_attr, interval) 定义一个滚动窗口。 滚动窗口把行分配到有固定持续时间( interval )的不重叠的连续窗口。 例如,5 分钟的滚动窗口以 5 分钟为间隔对行进行分组。 滚动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。 HOP(time_attr, interval, interval) 定义一个跳跃的时间窗口(在 Table API 中称为滑动窗口)。 滑动窗口有一个固定的持续时间( 第二个 interval 参数 )以及一个滑动的间隔(第一个 interval 参数 )。 如果滑动间隔小于窗口的持续时间,滑动窗口则会出现重叠;因此,行将会被分配到多个窗口中。 例如,一个大小为 15 分钟的滑动窗口,其滑动间隔为 5 分钟,将会把每一行数据分配到 3 个 15 分钟的窗口中。滑动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。 SESSION(time_attr, interval) 定义一个会话时间窗口。 会话时间窗口没有一个固定的持续时间,但是它们的边界会根据 interval 所定义的不活跃时间所确定;即一个会话时间窗口在定义的间隔时间内没有事件出现,该窗口会被关闭。 例如时间窗口的间隔时间是 30 分钟,当其不活跃的时间达到30分钟后,如果观测到新的记录,则会启动一个新的会话时间窗口(否则该行数据会被添加到当前的窗口),且如果在 30 分钟内没有观测到新纪录,这个窗口将会被关闭。会话时间窗口可以使用事件时间(批处理、流处理)或处理时间(流处理)。 窗口辅助函数 可以使用以下辅助函数选择组窗口的开始和结束时间戳以及时间属性。 辅助函数必须使用与GROUP BY 子句中的分组窗口函数完全相同的参数来调用。 表2 窗口辅助函数表 辅助函数 说明 TUMBLE_START(time_attr, interval) HOP_START(time_attr, interval, interval) SESSION_START(time_attr, interval) 返回相对应的滚动、滑动和会话窗口范围内的下界时间戳。 TUMBLE_END(time_attr, interval) HOP_END(time_attr, interval, interval) SESSION_END(time_attr, interval) 返回相对应的滚动、滑动和会话窗口范围以外的上界时间戳。 范围以外的上界时间戳不可以 在随后基于时间的操作中,作为行时间属性使用,比如基于时间窗口的join以及分组窗口或分组窗口上的聚合。 TUMBLE_ROWTIME(time_attr, interval) HOP_ROWTIME(time_attr, interval, interval) SESSION_ROWTIME(time_attr, interval) 返回的是一个可用于后续需要基于时间的操作的时间属性(rowtime attribute),比如基于时间窗口的join以及 分组窗口或分组窗口上的聚合。 TUMBLE_PROCTIME(time_attr, interval) HOP_PROCTIME(time_attr, interval, interval) SESSION_PROCTIME(time_attr, interval) 返回一个可用于后续需要基于时间的操作的 处理时间参数,比如基于时间窗口的join以及分组窗口或分组窗口上的聚合. 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 // 每天计算SUM(金额)(事件时间)。 insert into temp SELECT name, TUMBLE_START(ts, INTERVAL '1' DAY) as wStart, SUM(amount) FROM Orders GROUP BY TUMBLE(ts, INTERVAL '1' DAY), name; // 每天计算SUM(金额)(处理时间)。 insert into temp SELECT name, SUM(amount) FROM Orders GROUP BY TUMBLE(proctime, INTERVAL '1' DAY), name; // 每个小时计算事件时间中最近24小时的SUM(数量)。 insert into temp SELECT product, SUM(amount) FROM Orders GROUP BY HOP(ts, INTERVAL '1' HOUR, INTERVAL '1' DAY), product; // 计算每个会话的SUM(数量),间隔12小时的不活动间隙(事件时间)。 insert into temp SELECT name, SESSION_START(ts, INTERVAL '12' HOUR) AS sStart, SESSION_END(ts, INTERVAL '12' HOUR) AS sEnd, SUM(amount) FROM Orders GROUP BY SESSION(ts, INTERVAL '12' HOUR), name;
-
IN 语法格式 1 2 3 SELECT [ ALL | DISTINCT ] { * | projectItem [, projectItem ]* } FROM tableExpression WHERE column_name IN (value (, value)* ) | query 语法说明 IN操作符允许在where子句中规定多个值。如果表达式在给定的表子查询中存在,则返回 true 。 注意事项 子查询表必须由单个列构成,且该列的数据类型需与表达式保持一致。 示例 输出Orders中NewProducts中product的user和amount信息。 1 2 3 4 5 insert into temp SELECT user, amount FROM Orders WHERE product IN ( SELECT product FROM NewProducts );
-
Union/Union ALL/Intersect/Except 语法格式 1 query UNION [ ALL ] | Intersect | Except query 语法说明 UNION返回多个查询结果的并集。 Intersect返回多个查询结果的交集。 Except返回多个查询结果的差集。 注意事项 集合运算是以一定条件将表首尾相接,所以其中每一个SELECT语句返回的列数必须相同,列的类型一定要相同,列名不一定要相同。 UNION默认是去重的,UNION ALL是不去重的。 示例 输出Orders1和Orders2的并集,不包含重复记录。 1 2 insert into temp SELECT * FROM Orders1 UNION SELECT * FROM Orders2;
-
Grouping sets, Rollup, Cube 功能描述 GROUPING SETS 的 GROUP BY 子句可以生成一个等效于由多个简单 GROUP BY 子句的 UNION ALL 生成的结果集,并且其效率比 GROUP BY 要高。 ROLLUP与CUBE按一定的规则产生多种分组,然后按各种分组统计数据。 CUBE生成的结果集显示了所选列中值的所有组合的聚合。 Rollup生成的结果集显示了所选列中值的某一层次结构的聚合。 语法格式 SELECT [ ALL | DISTINCT ] { * | projectItem [, projectItem ]* } FROM tableExpression [ WHERE booleanExpression ] [ GROUP BY groupingItem] 语法说明 groupingItem:是Grouping sets(columnName [, columnName]*)、Rollup(columnName [, columnName]*)、Cube(columnName [, columnName]*) 注意事项 无 示例 分别产生基于user和product的结果 INSERT INTO temp SELECT SUM(amount) FROM Orders GROUP BY GROUPING SETS ((user), (product));
-
表达式GROUP BY 功能描述 按表达式对流进行分组操作。 语法格式 1 2 3 4 SELECT [ ALL | DISTINCT ] { * | projectItem [, projectItem ]* } FROM tableExpression [ WHERE booleanExpression ] [ GROUP BY { groupItem [, groupItem ]* } ] 语法说明 groupItem:可以是单字段,多字段,也可以是字符串函数等调用,不能是聚合函数。 注意事项 无 示例 先利用substring函数取字段name的子字符串,并按照该子字符串进行分组,返回每个子字符串及对应的记录数。 1 2 insert into temp SELECT substring(name,6),count(name) FROM student GROUP BY substring(name,6);
-
按列GROUP BY 功能描述 按列进行分组操作。 语法格式 1 2 3 4 SELECT [ ALL | DISTINCT ] { * | projectItem [, projectItem ]* } FROM tableExpression [ WHERE booleanExpression ] [ GROUP BY { groupItem [, groupItem ]* } ] 语法说明 GROUP BY:按列可分为单列GROUP BY与多列GROUP BY。 单列GROUP BY:指GROUP BY子句中仅包含一列。 多列GROUP BY:指GROUP BY子句中不止一列,查询语句将按照GROUP BY的所有字段分组,所有字段都相同的记录将被放在同一组中。 注意事项 GroupBy在流处理表中会产生更新结果 示例 根据score及name两个字段对表student进行分组,并返回分组结果。 1 2 insert into temp SELECT name,score, max(score) FROM student GROUP BY name,score;
-
SPLIT_INDEX 函数说明 SPLIT_INDEX(string1, string2, integer1) 参数说明 string1: 类型:STRING 说明:需要被分割的原始字符串。 示例:'a,b,c,d' 或 'a\bc\bd' string2: 类型:STRING 说明:分割字符串的分隔符。 特殊字符处理: 如果分隔符中包含特殊字符(如 \\、* 等),需要使用双反斜杠 \\ 进行转义。 分隔符为 . 时不需要转义。 如果分隔符为 \\ 本身,应写为 '\\\\'。 integer1: 类型:INT 说明:指定提取的分割后的部分索引,从 0 开始计数。 示例:0 表示提取第一个部分,1 表示提取第二个部分,依此类推。 返回值 返回分割后的字符串中指定索引位置的部分。 如果索引超出范围或输入参数为 NULL,返回 NULL。 示例1 SELECT SPLIT_INDEX('a,b,c,d', ',', 1); -- 返回 'b' 示例2: 点号(.)作为分隔符,不需要转义: SELECT SPLIT_INDEX('a.b.c.d', '.', 2); -- 返回 'c' 示例3: 反斜杠(\)作为分隔符: 反斜杠本身也需要转义,使用 '\\\\': SELECT SPLIT_INDEX('a\\bc\\bd', '\\\\', 1); -- 返回 'bc'
-
字符串函数 数据湖探索 (DLI)提供了丰富的字符串函数,用于处理和转换字符串数据。这些函数包括拼接、大小写转换、截取子串、替换、正则匹配、编码解码、格式转换等。此外,还支持字符串长度计算、位置查找、填充、反转等功能,以及从JSON字符串中提取值的JSON_VAL函数。这些功能广泛应用于数据清洗、文本处理和数据分析场景,为开发者提供强大的工具支持。 字符串函数简介请参考表1,更多内容参考Apache Flink。 表1 字符串函数 函数 返回类型 描述 string1 || string2 STRING 返回两个字符串的拼接 CHAR_LENGTH(string) CHARACTER_LENGTH(string) INT 返回字符串中的字符数量 UPPER(string) STRING 返回字符串的大写形式 LOWER(string) STRING 返回字符串的小写形式 POSITION(string1 IN string2) INT 返回第一个字符串在第二个字符串中首次出现的位置。若第一个字符串不存在与第二个字符串,则返回0 TRIM([ BOTH | LEADING | TRAILING ] string1 FROM string2) STRING 去除string2字符串的首尾(或首部、或尾部)的string1字符串 LTRIM(string) STRING 返回去除首部空格后的字符串 例如LTRIM(' This is a test String.') 返回"This is a test String." RTRIM(string) STRING 返回去除尾部空格后的字符串 例如RTRIM('This is a test String. ') 返回"This is a test String." REPEAT(string, integer) STRING 返回integer个string连接后的字符串 例如REPEAT('This is a test String.', 2) 返回"This is a test String.This is a test String." REGEXP_REPLACE(string1, string2, string3) STRING 用string3代替string1中的符合正则表达式string2的字符串,并返回替换后的string1字符串 例如REGEXP_REPLACE('foobar', 'oo|ar', '') 返回"fb" REGEXP_REPLACE('ab\ab', '\\', 'e')返回"abeab" OVERLAY(string1 PLACING string2 FROM integer1 [ FOR integer2 ]) STRING 用string2代替string1中的字符串,从integer1开始,替换长度为integer2,并返回替换后的string1字符串 integer2默认为string2的长度 例如OVERLAY('This is an old string' PLACING ' new' FROM 10 FOR 5)返回"This is a new string" SUBSTRING(string FROM integer1 [ FOR integer2 ]) STRING 返回string中从integer1位置开始的长度为integer2的子字符串。若integer2未配置,则默认返回从integer1开始到末尾的子字符串 REPLACE(string1, string2, string3) STRING 用string3代替string1中的string2后的字符串,并返回替换后的string1字符串 例如:REPLACE('hello world', 'world', 'flink') 返回"hello flink" REPLACE('ababab', 'abab', 'z') 返回"zab" REPLACE('ab\\ab', '\\', 'e')返回"abeab" REGEXP_EXTRACT(string1, string2[, integer]) STRING 使用正则表达式string2匹配抽取字符串string1中的第integer个字串,integer从1开始,正则匹配提取。 若参数为 NULL或者正则不合法,则返回NULL。 例如REGEXP_EXTRACT('foothebar', 'foo(.*?)(bar)', 2)" 返回"bar" INITCAP(string) STRING 返回将字符串的首字符大写其余字符转为小写后的字符串 CONCAT(string1, string2,...) STRING 返回将两个或多个字符串拼接后的新字符串。 例如 CONCAT('AA', 'BB', 'CC') 返回"AABBCC" CONCAT_WS(string1, string2, string3,...) STRING 返回将每个参数和第一个参数指定的分隔符依次连接到一起组成的字符串。若string1是null,则返回null。若其他参数为null,在执行拼接过程中跳过取值为null的参数 例如CONCAT_WS('~', 'AA', NULL, 'BB', '', 'CC') 返回"AA~BB~~CC" LPAD(string1, integer, string2) STRING 将string2字符串拼接到string1字符串的左端,直到新的字符串达到指定长度integer为止 任意参数为null时,返回null 若integer为负数,则返回null 若integer不大于string1的长度,则返回string1裁剪为integer长度的字符串 例如LPAD('hi',4,'??') 返回"??hi" LPAD('hi',1,'??') 返回"h" RPAD(string1, integer, string2) STRING 将string2字符串拼接到string1字符串的右端,直到新的字符串达到指定长度integer为止 任意参数为null时,返回null 若integer为负数,则返回null 若integer不大于string1的长度,则返回string1裁剪为integer长度的字符串 例如RPAD('hi',4,'??') 返回 "hi??" RPAD('hi',1,'??') 返回"h" FROM_BASE64(string) STRING 将base64编码的字符串str解析成对应字符串 若字符串为null,则返回null 例如FROM_BASE64('aGVsbG8gd29ybGQ=') 返回"hello world" TO_BASE64(string) STRING 将字符串基于base64编码 若字符串为null,则返回null 例如TO_BASE64('hello world') 返回"aGVsbG8gd29ybGQ=" ASCII(string) INT 返回字符串的第一个字符的ASCII值 若字符串为null,则返回null 例如ascii('abc') 返回97 ascii(CAST(NULL AS VARCHAR)) 返回NULL CHR(integer) STRING 将ASCII码转换为字符 若integer大于255,则计算出integer除以255的余数,并将余数作为ASCII码值 若integer为null,则返回null chr(97) 返回a chr(353) 返回a DECODE(binary, string) STRING 使用提供的字符集string解码参数binary,字符集可以为'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16' 若任意参数为null,则返回null ENCODE(strinh1, string2) STRING 使用提供的字符集string2编码字符串string1,字符集可以为'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16' 若任意参数为null,则返回null INSTR(string1, string2) INT 返回string2在string1中首次出现的位置 若有参数为null,则返回null LEFT(string, integer) STRING 返回最左边的integer个字符 若integer为负数,则返回空 若存在参数为null,则返回null RIGHT(string, integer) STRING 返回最右侧的integer个字符 若integer为负数,则返回空 若存在参数为null,则返回null LOCATE(string1, string2[, integer]) INT 返回string1在string2的位置integer之后首次出现的位置 若string1在string2的位置integer之后不存在,则返回0 若integer不存在,则默认为0 若存在参数为null,则返回null PARSE_URL(string1, string2[, string3]) STRING 返回URL string1中指定的部分解析后的值 string2为'HOST'、'PATH'、'QUERY'、'REF'、'PROTOCOL'、'AUTHORITY'、'FILE'或'USERINFO' 若存在参数为null,则返回null 若string2为QUERY,也可以指定QUERY中的key为string3 例如: parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST')返回 'facebook.com' parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'QUERY', 'k1') 返回'v1' REGEXP(string1, string2) BOOLEAN 对指定的字符串执行一个正则表达式搜索,并返回一个BOOLEAN值表示是否找到指定的匹配模式。若找到,则返回TRUE。其中string1表示指定的字符串,string2表示正则表达式 若存在参数为null,则返回null REVERSE(string) STRING 反转字符串,返回字符串值的相反顺序。 若存在参数为null,则返回null 说明: 使用时请注意需在函数上加反引号 ` REVERSE ` 。 SPLIT_INDEX(string1, string2, integer1) STRING 以string2作为分隔符,将字符串string1分割成若干段,取其中的第integer1段。integer1从0开始 若integer1为负数,则返回null 如果任一参数为null,则返回null 具体函数说明请参考SPLIT_INDEX 函数说明。 STR_TO_MAP(string1[, string2, string3]]) MAP 使用string2分隔符将string1分割成K-V对,并使用string3分隔每个K-V对,组装成MAP返回 string2默认为',' string3默认为'=' SUBSTR(string[, integer1[, integer2]]) STRING 截取从位置integer1开始,长度为integer2的子串,并返回 若为指定integer2,翻截取到字符串结尾 JSON_VAL(STRING json_string, STRING json_path) STRING 从json形式的字符串json_string中提取指定json_path的值。具体函数使用可以参考JSON_VAL函数说明说明。 说明: 以下规则优先级按照顺序从高到低。 不允许json_string和json_path为NULL json_string格式必须为合法的json串,否则函数返回NULL json_string为空字符串,则函数返回空字符串 json_path为空字串或路径不存在,则函数返回NULL
-
JSON_VAL函数使用说明 语法 STRING JSON_VAL(STRING json_string, STRING json_path) 表2 参数说明 参数 数据类型 说明 json_string STRING 需要解析的JSON对象,使用字符串表示。 json_path STRING 解析JSON的路径表达式,使用字符串表示。 目前path支持如下表达式参考下表表3。 表3 json_path参数支持的表达式 表达式 说明 $ 根对象 [] 数组下标 * 数组通配符 . 取子元素 示例 测试输入数据。 测试数据源kafka,具体消息内容参考如下: "{name:James,age:24,gender:male,grade:{math:95,science:[80,85],english:100}}" "{name:James,age:24,gender:male,grade:{math:95,science:[80,85],english:100}]" 使用JSON_VAL编写SQL create table kafkaSource( message STRING ) with ( 'connector.type' = 'kafka', 'connector.version' = '0.11', 'connector.topic' = 'topic-swq', 'connector.properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092,yyy.yyy.yyy:9092,zzz.zzz.zzz.zzz:9092', 'connector.startup-mode' = 'earliest-offset', 'format.field-delimiter' = '|', 'format.type' = 'csv' ); create table kafkaSink( message1 STRING, message2 STRING, message3 STRING, message4 STRING, message5 STRING, message6 STRING ) with ( 'connector.type' = 'kafka', 'connector.version' = '0.11', 'connector.topic' = 'topic-swq-out', 'connector.properties.bootstrap.servers' = 'xxx.xxx.xxx.xxx:9092,yyy.yyy.yyy:9092,zzz.zzz.zzz.zzz:9092', 'format.type' = 'json' ); INSERT INTO kafkaSink SELECT JSON_VAL(message,""), JSON_VAL(message,"$.name"), JSON_VAL(message,"$.grade.science"), JSON_VAL(message,"$.grade.science[*]"), JSON_VAL(message,"$.grade.science[1]"), JSON_VAL(message,"$.grade.dddd") FROM kafkaSource; 查看输出结果 {"message1":null,"message2":"swq","message3":"[80,85]","message4":"[80,85]","message5":"85","message6":null} {"message1":null,"message2":null,"message3":null,"message4":null,"message5":null,"message6":null}
-
字符串函数 数据湖 探索(DLI)提供了丰富的字符串函数,用于处理和转换字符串数据。这些函数包括拼接、大小写转换、截取子串、替换、正则匹配、编码解码、格式转换等。此外,还支持字符串长度计算、位置查找、填充、反转等功能,以及从JSON字符串中提取值的JSON_VAL函数。这些功能广泛应用于数据清洗、文本处理和数据分析场景,为开发者提供强大的工具支持。 字符串函数简介请参考表1,更多内容参考Apache Flink。 表1 字符串函数 函数 返回类型 描述 string1 || string2 STRING 返回两个字符串的拼接 CHAR_LENGTH(string) CHARACTER_LENGTH(string) INT 返回字符串中的字符数量 UPPER(string) STRING 返回字符串的大写形式 LOWER(string) STRING 返回字符串的小写形式 POSITION(string1 IN string2) INT 返回第一个字符串在第二个字符串中首次出现的位置。若第一个字符串不存在与第二个字符串,则返回0 TRIM([ BOTH | LEADING | TRAILING ] string1 FROM string2) STRING 去除string2字符串的首尾(或首部、或尾部)的string1字符串 LTRIM(string) STRING 返回去除首部空格后的字符串 例如LTRIM(' This is a test String.') 返回"This is a test String." RTRIM(string) STRING 返回去除尾部空格后的字符串 例如RTRIM('This is a test String. ') 返回"This is a test String." REPEAT(string, integer) STRING 返回integer个string连接后的字符串 例如REPEAT('This is a test String.', 2) 返回"This is a test String.This is a test String." REGEXP_REPLACE(string1, string2, string3) STRING 用string3代替string1中的符合正则表达式string2的字符串,并返回替换后的string1字符串 例如REGEXP_REPLACE('foobar', 'oo|ar', '') 返回"fb" REGEXP_REPLACE('ab\ab', '\\', 'e')返回"abeab" OVERLAY(string1 PLACING string2 FROM integer1 [ FOR integer2 ]) STRING 用string2代替string1中的字符串,从integer1开始,替换长度为integer2,并返回替换后的string1字符串 integer2默认为string2的长度 例如OVERLAY('This is an old string' PLACING ' new' FROM 10 FOR 5)返回"This is a new string" SUBSTRING(string FROM integer1 [ FOR integer2 ]) STRING 返回string中从integer1位置开始的长度为integer2的子字符串。若integer2未配置,则默认返回从integer1开始到末尾的子字符串 REPLACE(string1, string2, string3) STRING 用string3代替string1中的string2后的字符串,并返回替换后的string1字符串 例如:REPLACE('hello world', 'world', 'flink') 返回"hello flink" REPLACE('ababab', 'abab', 'z') 返回"zab" REPLACE('ab\\ab', '\\', 'e')返回"abeab" REGEXP_EXTRACT(string1, string2[, integer]) STRING 使用正则表达式string2匹配抽取字符串string1中的第integer个字串,integer从1开始,正则匹配提取。 若参数为 NULL或者正则不合法,则返回NULL。 例如REGEXP_EXTRACT('foothebar', 'foo(.*?)(bar)', 2)" 返回"bar" INITCAP(string) STRING 返回将字符串的首字符大写其余字符转为小写后的字符串 CONCAT(string1, string2,...) STRING 返回将两个或多个字符串拼接后的新字符串。 例如 CONCAT('AA', 'BB', 'CC') 返回"AABBCC" CONCAT_WS(string1, string2, string3,...) STRING 返回将每个参数和第一个参数指定的分隔符依次连接到一起组成的字符串。若string1是null,则返回null。若其他参数为null,在执行拼接过程中跳过取值为null的参数 例如CONCAT_WS('~', 'AA', NULL, 'BB', '', 'CC') 返回"AA~BB~~CC" LPAD(string1, integer, string2) STRING 将string2字符串拼接到string1字符串的左端,直到新的字符串达到指定长度integer为止 任意参数为null时,返回null 若integer为负数,则返回null 若integer不大于string1的长度,则返回string1裁剪为integer长度的字符串 例如LPAD('hi',4,'??') 返回"??hi" LPAD('hi',1,'??') 返回"h" RPAD(string1, integer, string2) STRING 将string2字符串拼接到string1字符串的右端,直到新的字符串达到指定长度integer为止 任意参数为null时,返回null 若integer为负数,则返回null 若integer不大于string1的长度,则返回string1裁剪为integer长度的字符串 例如RPAD('hi',4,'??') 返回 "hi??" RPAD('hi',1,'??') 返回"h" FROM_BASE64(string) STRING 将base64编码的字符串str解析成对应字符串 若字符串为null,则返回null 例如FROM_BASE64('aGVsbG8gd29ybGQ=') 返回"hello world" TO_BASE64(string) STRING 将字符串基于base64编码 若字符串为null,则返回null 例如TO_BASE64('hello world') 返回"aGVsbG8gd29ybGQ=" ASCII(string) INT 返回字符串的第一个字符的ASCII值 若字符串为null,则返回null 例如ascii('abc') 返回97 ascii(CAST(NULL AS VARCHAR)) 返回NULL CHR(integer) STRING 将ASCII码转换为字符 若integer大于255,则计算出integer除以255的余数,并将余数作为ASCII码值 若integer为null,则返回null chr(97) 返回a chr(353) 返回a DECODE(binary, string) STRING 使用提供的字符集string解码参数binary,字符集可以为'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16' 若任意参数为null,则返回null ENCODE(strinh1, string2) STRING 使用提供的字符集string2编码字符串string1,字符集可以为'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16' 若任意参数为null,则返回null INSTR(string1, string2) INT 返回string2在string1中首次出现的位置 若有参数为null,则返回null LEFT(string, integer) STRING 返回最左边的integer个字符 若integer为负数,则返回空 若存在参数为null,则返回null RIGHT(string, integer) STRING 返回最右侧的integer个字符 若integer为负数,则返回空 若存在参数为null,则返回null LOCATE(string1, string2[, integer]) INT 返回string1在string2的位置integer之后首次出现的位置 若string1在string2的位置integer之后不存在,则返回0 若integer不存在,则默认为0 若存在参数为null,则返回null PARSE_URL(string1, string2[, string3]) STRING 返回URL string1中指定的部分解析后的值 string2为'HOST'、'PATH'、'QUERY'、'REF'、'PROTOCOL'、'AUTHORITY'、'FILE'或'USERINFO' 若存在参数为null,则返回null 若string2为QUERY,也可以指定QUERY中的key为string3 例如: parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST')返回 'facebook.com' parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'QUERY', 'k1') 返回'v1' REGEXP(string1, string2) BOOLEAN 对指定的字符串执行一个正则表达式搜索,并返回一个BOOLEAN值表示是否找到指定的匹配模式。若找到,则返回TRUE。其中string1表示指定的字符串,string2表示正则表达式 若存在参数为null,则返回null REVERSE(string) STRING 反转字符串,返回字符串值的相反顺序。 若存在参数为null,则返回null SPLIT_INDEX(string1, string2, integer1) STRING 以string2作为分隔符,将字符串string1分割成若干段,取其中的第integer1段。integer1从0开始 若integer1为负数,则返回null 如果任一参数为null,则返回null STR_TO_MAP(string1[, string2, string3]]) MAP 使用string2分隔符将string1分割成K-V对,并使用string3分隔每个K-V对,组装成MAP返回 string2默认为',' string3默认为'=' SUBSTR(string[, integer1[, integer2]]) STRING 截取从位置integer1开始,长度为integer2的子串,并返回 若为指定integer2,翻截取到字符串结尾 JSON_VAL(STRING json_string, STRING json_path) STRING 从json形式的字符串json_string中提取指定json_path的值。具体函数使用可以参考JSON_VAL函数使用说明说明。 说明: 以下规则优先级按照顺序从高到低。 不允许json_string和json_path为NULL json_string格式必须为合法的json串,否则函数返回NULL json_string为空字符串,则函数返回空字符串 json_path为空字串或路径不存在,则函数返回NULL
-
前提条件 该场景作业需要运行在DLI的独享队列上,因此要与Doris建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。 如何建立增强型跨源连接,请参考《数据湖探索用户指南》中增强型跨源连接章节。 如何设置安全组规则,请参见《虚拟私有云用户指南》中“安全组”章节。 如果使用 MRS Doris,请在增强型跨源的主机信息中添加MRS集群所有节点的主机ip信息。 详细操作请参考《数据湖探索用户指南》中的“修改主机信息”章节描述。 集群未启用Kerberos认证(普通模式) 使用admin用户连接Doris后,创建具有管理员权限的角色并绑定给用户。
-
注意事项 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。 认证用的username和password等硬编码到代码中或者明文存储都有很大的安全风险,建议使用DEW管理凭证。配置文件或者环境变量中密文存放,使用时解密,确保安全。Flink Opensource SQL使用DEW管理访问凭据 集群未启用Kerberos认证(普通模式) Doris的表名是区分大小写。 使用cloudTable的doris时,'fenodes'字段值的端口请用8030,如'xx:8030'。同时安全组请放开端口8030,8040,9030。 开启HTTPS后,需要在创建表的with子句中添加如下配置参数: 'doris.enable.https' = 'true' 'doris.ignore.https.ca' = 'true' 请在Flink“作业编辑”页面选择“运行参数配置”,选择“开启Checkpoint”,否则会导致Doris结果表无法写入数据,且写入Doris的延时取决于设置的Checkpoint的间隔时间。
-
示例 该示例是从Datagen数据源中生成数据,并将结果写入到Doris结果表中。 参考增强型跨源连接,在DLI上根据Doris所在的虚拟私有云和子网分别创建相应的增强型跨源连接,并绑定所要使用的Flink弹性资源池。参考“修改主机信息”章节描述,在增强型跨源中增加MRS的主机信息。 设置Doris的安全组,添加入向规则使其对Flink的队列网段放通。分别根据Doris的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。 参考测试地址连通性。 参考MRS Doris使用指南,创建doris表,创建语句如下: CREATE TABLE IF NOT EXISTS dorisdemo ( `user_id` varchar(10) NOT NULL, `city` varchar(10), `age` int, `gender` int ) DISTRIBUTED BY HASH(`user_id`) BUCKETS 10 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业脚本,并提交运行。该作业脚本将Datagen作为数据源,将数据写入到Doris作为结果表中。 create table student_datagen_source( `user_id` String NOT NULL, `city` String, `age` int, `gender` int ) with ( 'connector' = 'datagen', 'rows-per-second' = '1', 'fields.user_id.kind' = 'random', 'fields.user_id.length' = '7', 'fields.city.kind' = 'random', 'fields.city.length' = '7' ); CREATE TABLE dorisDemo ( `user_id` String NOT NULL, `city` String, `age` int, `gender` int ) with ( 'connector' = 'doris', 'fenodes' = 'FE_IP:PORT', 'table.identifier' = 'demo.dorisdemo', 'username' = 'dorisUser', 'password' = 'dorisPassword', 'sink.label-prefix' = 'demo', 'sink.enable-2pc' = 'true', 'sink.buffer-count' = '10' ); insert into dorisDemo select * from student_datagen_source 查看doris结果表是否已成功写入数据。 user_id city age gender 50aff04 93406c5 12 1 681a230 1f27d06 16 1 006eff4 3521ded 18 0
-
语法格式 create table dorisSource ( attr_name attr_type (',' attr_name attr_type)* ) with ( 'connector' = 'doris', 'fenodes' = 'FE_IP:PORT,FE_IP:PORT,FE_IP:PORT', 'table.identifier' = 'database.table', 'username' = 'dorisUsername', 'password' = 'dorisPassword' );
-
示例 示例1:该示例是从DMS Kafka数据源中读取数据,并写入到Print结果表中。 参考增强型跨源连接,根据Kafka所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。 设置Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根据Kafka的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业脚本,提交运行作业。 注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。 CREATE TABLE upsertKafkaSource ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'upsert-kafka', 'topic' = 'KafkaTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkAddress2:KafkaPort', 'key.format' = 'csv', 'value.format' = 'json' ); CREATE TABLE printSink ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'print' ); INSERT INTO printSink SELECT * FROM upsertKafkaSource; 向Kafka中的指定topic中插入如下数据(注意:kafka插入数据时请指定key)。 {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"} {"order_id":"202303251505050001", "order_channel":"appshop", "order_time":"2023-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2023-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"} {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330111"} 查看taskmanager的out文件,数据结果参考如下: +I(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110) +I(202303251505050001,appshop,2023-03-25 15:05:05,500.0,400.0,2023-03-2515:10:00,0003,Cindy,330108) -U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110) +U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330111)
-
参数说明 表2 参数说明 参数 是否必选 默认参数 数据类型 说明 connector 是 无 String connector类型,对于upsert kafka连接器,需配置为'upsert-kafka'。 topic 是 无 String Kafka topic名。 properties.bootstrap.servers 是 无 String Kafka brokers地址,以逗号分隔。 key.format 是 无 String 用于对Kafka消息中key部分序列化和反序列化的格式。key字段由PRIMARY KEY语法指定。支持的格式如下: csv json avro 请参考Format页面以获取更多详细信息和格式参数。 key.fields-prefix 否 无 String 为键格式的所有字段定义自定义前缀,以避免与值格式的字段发生名称冲突。 默认情况下,前缀为空。如果定义了自定义前缀,则表架构和'key.fields'都将使用前缀名称。在构造密钥格式的数据类型时,将删除前缀,并在密钥格式中使用无前缀的名称。请注意,此选项要求'value.fields-include' 必须设置为'EXCEPT_KEY'。 value.format 是 无 String 用于对 Kafka消息中 value 部分序列化和反序列化的格式。支持的格式: csv json avro 请参考Format页面以获取更多详细信息和格式参数。 value.fields-include 是 ALL String 控制哪些字段应该出现在值中。取值范围如下: ALL:消息的value部分将包含schema的所有字段,包括定义中键的字段。 EXCEPT_KEY:记录的value部分包含schema的所有内容,定义为主键的字段除外。 properties.* 否 无 String 该选项可以传递任意的Kafka参数。 “properties.”后的后缀名必须匹配定义在 kafka参数文档中的参数名。 Flink会自动移除选项名中的 "properties." 前缀,并将转换后的键名以及值传入KafkaClient。 例如:您可以通过 'properties.allow.auto.create.topics' = 'false' 来禁止自动创建 topic。 但是'key.deserializer' 和 'value.deserializer' 是不允许通过该方式传递参数,因为Flink会重写这些参数的值。 sink.parallelism 否 无 Integer 定义upsert-kafka sink 算子的并行度。默认情况下,由框架确定并行度,与上游连接算子的并行度保持一致。 sink.buffer-flush.max-rows 否 0 Integer 缓存刷新前,最多能缓存的记录条数。 当sink收到很多同key上的更新时,缓存将保留同 key 的最后一条记录,因此sink缓存能帮助减少发往Kafka topic的数据量,以及避免发送潜在的tombstone消息。可以通过设置为'0'来禁用它。 默认情况下,该选项是未开启的。如果要开启 sink 缓存,需要同时设置'sink.buffer-flush.max-rows'和'sink.buffer-flush.interval'两个选项为大于零的值。 sink.buffer-flush.interval 否 0 Duration 缓存刷新的间隔时间,超过该时间后异步线程将刷新缓存数据。单位可以为毫秒(ms)、秒(s)、分钟(min)或小时(h)。例如'sink.buffer-flush.interval'='10 ms'。 默认情况下,该选项是未开启的。如果要开启 sink 缓存,需要同时设置'sink.buffer-flush.max-rows'和'sink.buffer-flush.interval'两个选项为大于零的值。
-
功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic中读取数据并将数据写入Kafka topic。表类型支持源表和结果表。 作为source,upsert-kafka 连接器生产changelog流,其中每条数据记录代表一个更新或删除事件。 数据记录中的value被解释为同一key的最后一个value的UPDATE,如果有这个key(如果不存在相应的key,则该更新被视为INSERT)。用表来类比,changelog 流中的数据记录被解释为UPSERT,也称为INSERT/UPDATE,因为任何具有相同key的现有行都被覆盖。另外,value为空的消息将会被视作为DELETE消息。 作为sink,upsert-kafka连接器可以消费changelog流。它会将INSERT/UPDATE_AFTER数据作为正常的Kafka消息写入,并将DELETE数据以value为空的Kafka消息写入(表示对应 key 的消息被删除)。Flink将根据主键列的值对数据进行分区,从而保证主键上的消息有序,因此同一主键上的更新/删除消息将落在同一分区中。 表1 支持类别 类别 详情 支持表类型 源表、结果表
-
注意事项 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。 认证用的username和password等硬编码到代码中或者明文存储都有很大的安全风险,建议使用DEW管理凭证。配置文件或者环境变量中密文存放,使用时解密,确保安全。Flink Opensource SQL使用DEW管理访问凭据 Upsert Kafka 始终以upsert方式工作,并且需要在DDL中定义主键。在具有相同主键值的消息按序存储在同一个分区的前提下,在 changlog source 定义主键意味着 在物化后的 changelog 上主键具有唯一性。定义的主键将决定哪些字段出现在Kafka消息的key中。 由于该连接器以 upsert 的模式工作,该连接器作为 source 读入时,可以确保具有相同主键值下仅最后一条消息会生效。 数据类型的使用,请参考Format章节。
-
语法格式 1 2 3 4 5 6 7 8 9 10 11 12 create table kafkaTable( attr_name attr_type (',' attr_name attr_type)* (','PRIMARY KEY (attr_name, ...) NOT ENFORCED) ) with ( 'connector' = 'upsert-kafka', 'topic' = '', 'properties.bootstrap.servers' = '', 'key.format' = '', 'value.format' = '' );
-
示例 从Kafka源表中读取数据,将Redis表作为维表,并将二者生成的宽表信息写入Kafka结果表中,其具体步骤如下: 参考增强型跨源连接,根据Redis和Kafka所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。 设置Redis和Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根据Redis的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。 登录Redis客户端,通过如下命令向Redis发送如下数据: HMSET 330102 area_province_name a1 area_province_name b1 area_county_name c1 area_street_name d1 region_name e1 HMSET 330106 area_province_name a1 area_province_name b1 area_county_name c2 area_street_name d2 region_name e1 HMSET 330108 area_province_name a1 area_province_name b1 area_county_name c3 area_street_name d3 region_name e1 HMSET 330110 area_province_name a1 area_province_name b1 area_county_name c4 area_street_name d4 region_name e1 参考创建Flink OpenSource作业,创建flink opensource sql作业,输入以下作业脚本,提交运行作业。该作业脚本将Kafka为数据源,Redis作为维表,数据写入到Kafka结果表中。 如下脚本中的加粗参数请根据实际环境修改。 CREATE TABLE orders ( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, proctime as Proctime() ) WITH ( 'connector' = 'kafka', 'topic' = 'kafkaSourceTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'properties.group.id' = 'GroupId', 'scan.startup.mode' = 'latest-offset', 'format' = 'json' ); --创建地址维表 create table area_info ( area_id string, area_province_name string, area_city_name string, area_county_name string, area_street_name string, region_name string, primary key (area_id) not enforced -- redis的key ) WITH ( 'connector' = 'redis', 'host' = 'RedisIP', 'password' = 'RedisPassword', 'data-type' = 'hash', 'deploy-mode' = 'master-replica' ); --根据地址维表生成详细的包含地址的订单信息宽表 create table order_detail( order_id string, order_channel string, order_time string, pay_amount double, real_pay double, pay_time string, user_id string, user_name string, area_id string, area_province_name string, area_city_name string, area_county_name string, area_street_name string, region_name string ) with ( 'connector' = 'kafka', 'topic' = 'kafkaSinkTopic', 'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort', 'format' = 'json' ); insert into order_detail select orders.order_id, orders.order_channel, orders.order_time, orders.pay_amount, orders.real_pay, orders.pay_time, orders.user_id, orders.user_name, area.area_id, area.area_province_name, area.area_city_name, area.area_county_name, area.area_street_name, area.region_name from orders left join area_info for system_time as of orders.proctime as area on orders.area_id = area.area_id; 连接Kafka集群,向Kafka的source topic中插入如下测试数据: {"order_id":"202103241606060001", "order_channel":"appShop", "order_time":"2021-03-24 16:06:06", "pay_amount":"200.00", "real_pay":"180.00", "pay_time":"2021-03-24 16:10:06", "user_id":"0001", "user_name":"Alice", "area_id":"330106"} {"order_id":"202103251202020001", "order_channel":"miniAppShop", "order_time":"2021-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2021-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"} {"order_id":"202103251505050001", "order_channel":"appShop", "order_time":"2021-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2021-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"} 连接Kafka集群,在Kafka的sink topic读取数据,结果数据参考如下: {"order_id":"202103241606060001","order_channel":"appShop","order_time":"2021-03-24 16:06:06","pay_amount":200.0,"real_pay":180.0,"pay_time":"2021-03-24 16:10:06","user_id":"0001","user_name":"Alice","area_id":"330106","area_province_name":"a1","area_city_name":"b1","area_county_name":"c2","area_street_name":"d2","region_name":"e1"} {"order_id":"202103251202020001","order_channel":"miniAppShop","order_time":"2021-03-25 12:02:02","pay_amount":60.0,"real_pay":60.0,"pay_time":"2021-03-25 12:03:00","user_id":"0002","user_name":"Bob","area_id":"330110","area_province_name":"a1","area_city_name":"b1","area_county_name":"c4","area_street_name":"d4","region_name":"e1"} {"order_id":"202103251505050001","order_channel":"appshop","order_time":"2021-03-25 15:05:05","pay_amount":500.0,"real_pay":400.0,"pay_time":"2021-03-25 15:10:00","user_id":"0003","user_name":"Cindy","area_id":"330108","area_province_name":"a1","area_city_name":"b1","area_county_name":"c3","area_street_name":"d3","region_name":"e1"}
-
语法格式 create table dwsSource ( attr_name attr_type (',' attr_name attr_type)* (',' watermark for rowtime_column_name as watermark-strategy_expression) ,PRIMARY KEY (attr_name, ...) NOT ENFORCED ) with ( 'connector' = 'redis', 'host' = '' );
-
参数说明 表1 参数说明 参数 是否必选 默认值 数据类型 说明 connector 是 无 String connector类型,需配置为'redis'。 host 是 无 String redis连接地址。 port 否 6379 Integer redis连接端口。 password 否 无 String redis认证密码。 namespace 否 无 String redis key的namespace delimiter 否 : String redis的key和namespace之间的分隔符。 data-type 否 hash String redis的数据类型,有下列选项 hash list set sorted-set string data-type取值约束详见data-type取值约束说明。 schema-syntax 否 fields String redis的schema语义,包含以下值: fields:适用于所有数据类型 fields-scores:适用于sorted set数据类型 array:适用于list、set、sorted set数据类型 array-scores:适用于sorted set数据类型 map:适用于hash、sorted set数据类型 schema-syntax取值约束详见schema-syntax取值约束说明。 deploy-mode 否 standalone String redis集群的部署模式,支持standalone、master-replica、cluster,默认standalone。 retry-count 是 5 Integer 设置每个连接请求的队列大小。如果超过队列大小,则命令调用将导致RedisException。将requestQueueSize设置为较低的值将导致在过载期间或连接处于断开状态时更早出现异常。更高的值意味着达到边界需要更长的时间,但可能会有更多的请求排队,并使用更多的堆空间。默认请设置为2147483647。 connection-timeout-millis 否 10000 Integer 尝试连接redis集群时的最大超时时间。 commands-timeout-millis 否 2000 Integer 等待操作完成响应的最大时间。 rebalancing-timeout-millis 否 15000 Integer redis集群失败时的休眠时间。 scan-keys-count 否 1000 Integer 每次扫描时读取的数量。 default-score 否 0 Double 当data-type设置为“sorted-set”数据类型的默认score。 deserialize-error-policy 否 fail-job Enum 数据解析失败时的处理方式。 枚举类型,包含以下值: fail-job:作业失败 skip-row:跳过当前数据 null-field:设置当前数据为null skip-null-values 否 true Boolean 是否跳过null。 lookup.async 否 false Boolean 作为redis维表时,是否使用异步 I/O。 lookup.parallelism 否 无 int 定义查找连接运算符的自定义并行度。默认情况下,如果未定义此选项,则规划器将通过考虑全局配置(如果定义了选项“lookup.parallelism”)来推导并行度,否则将考虑输入运算符的并行度。 lookup.batch.interval 否 1s Duration 批量查找连接可以使用最大延迟来缓冲输入记录。批量查找连接可以使用最大延迟来缓冲输入记录。 lookup.batch.size 否 100L long 可以缓冲的最大输入记录数,以便进行批量查找连接。 lookup.batch 否 false Boolean 指定是否启用批量查找优化。如果启用,用户必须同时设置 lookup.batch.interval 和 lookup.batch.size 选项。此外,由于底层批处理间隔干扰机制的实现,用户必须在 flink 配置中显式启用 table.exec.batch-lookup.enabled' 选项 ignore-retractions 否 false Boolean 连接器应忽略更新插入/撤回流模式下的收回消息。 key-column 否 无 String Redis 表schema的key
-
Hudi Hudi是一种数据湖的存储格式,在Hadoop文件系统之上提供了更新数据和删除数据的能力以及消费变化数据的能力。支持多种计算引擎,提供IUD接口,在HDFS的数据集上提供了插入更新和增量拉取的功能。 表1 支持类别 类别 详情 支持Flink表类型 源表、结果表 支持hudi表类型 MOR表,COW表 支持读写类型 批量读,批量写,流式读,流式写 Hudi源表 Hudi结果表 父主题: Connector列表
-
参数说明 表1 参数说明 参数 是否必选 默认值 数据类型 说明 connector 是 无 String connector类型,需配置为'redis'。 host 是 无 String redis连接地址。 port 否 6379 Integer redis连接端口。 password 否 无 String redis认证密码。 namespace 否 无 String redis key的namespace。 例如设置该值为"person",假设key为"jack"则redis中会是"person:jack"。 delimiter 否 : String redis的key和namespace之间的分隔符。 data-type 否 hash String redis的数据类型,有下列选项,与redis的数据类型相对应: hash list set sorted-set string data-type取值约束详见data-type取值约束说明。 schema-syntax 否 fields String redis的schema语义,包含以下值: fields:适用于所有数据类型。fields类型是指可以设置多个字段,写入时会取每个字段的值。 fields-scores:适用于sorted set数据类型,表示对每个字段都设置一个字段作为其独立的score。 array:适用于list、set、sorted set数据类型 array-scores:适用于sorted set数据类型 map:适用于hash、sorted set数据类型。 schema-syntax取值约束详见schema-syntax取值约束说明。 deploy-mode 否 standalone String redis集群的部署模式,支持standalone、master-replica、cluster,默认standalone。 该值可参考redis集群的实例类型介绍。 retry-count 否 5 Integer 连接redis集群的尝试次数。 connection-timeout-millis 否 10000 Integer 尝试连接redis集群时的最大超时时间。 commands-timeout-millis 否 2000 Integer 等待操作完成响应的最大时间。 rebalancing-timeout-millis 否 15000 Integer redis集群失败时的休眠时间。 default-score 否 0 Double 当data-type设置为“sorted-set”数据类型的默认score。 ignore-retraction 否 false Boolean 是否忽略retract消息。 skip-null-values 否 true Boolean 是否跳过null。如果为false,则设置为字符串"null"。 ignore-retractions 否 false Boolean 连接器应忽略更新插入/撤回流模式下的收回消息。 key-column 否 无 String Redis 表schema的key sink.delivery-guarantee 否 at-least-once String exactly-once: 记录只传送一次,在故障转移方案下也是如此。如果要生成完整的exactly-once管道,需要源和接收器支持exactly-once,并且已正确配置。 at-least-once: 确保传递记录,但可能会多次传递同一记录。通常,这种比exactly-once模式更快。 none: 记录将尽最大努力交付。这通常是处理记录的最快方法,但可能会发生记录丢失或重复的情况。 sink.parallelism 否 无 int 定义接收器的自定义并行度。默认情况下,如果未定义此选项,则规划器将通过考虑全局配置来单独派生每个语句的并行度。 key-ttl-mode 否 no-ttl String key-ttl-mode是开启Redis sink TTL的功能参数,key-ttl-mode的限制为:no-ttl、expire-msec、expire-at-date、expire-at-timestamp。 no-ttl:不设置过期时间。 expire-msec:设置key多久过期,参数为long类型字符串,单位为毫秒。 expire-at-date:设置key到某个时间点过期,参数为UTC时间。 expire-at-timestamp:设置key到某个时间点过期,参数为时间戳。 key-ttl 否 无 String key-ttl是key-ttl-mode的补充参数,有以下几种参数值: 当key-ttl-mode取值为no-ttl时,不需要配置此参数。 当key-ttl-mode取值为expire-msec时,需要配置为可以解析成Long型的字符串。例如5000,表示5000ms后key过期。 当key-ttl-mode取值为expire-at-date时,需要配置为Date类型字符串,例如2011-12-03T10:15:30,表示到期时间为北京时间2011-12-03 18:15:30。 当key-ttl-mode取值为expire-at-timestamp时,需要配置为timestamp类型字符串,单位为毫秒。例如1679385600000,表示到期时间为2023-03-21 16:00:00。
-
语法格式 1 2 3 4 5 6 7 8 9 10 create table dwsSource ( attr_name attr_type (',' attr_name attr_type)* (',' watermark for rowtime_column_name as watermark-strategy_expression) ,PRIMARY KEY (attr_name, ...) NOT ENFORCED ) with ( 'connector' = 'redis', 'host' = '' );
-
参数说明 表1 参数说明 参数 是否必选 默认值 数据类型 说明 connector 是 无 String connector类型,需配置为'redis'。 host 是 无 String redis连接地址。 port 否 6379 Integer redis连接端口。 password 否 无 String redis认证密码。 namespace 否 无 String redis key的namespace delimiter 否 : String redis的key和namespace之间的分隔符。 data-type 否 hash String redis的数据类型,有下列选项: hash list set sorted-set string data-type取值约束详见data-type取值约束说明。 schema-syntax 否 fields String redis的schema语义,包含以下值(其具体使用请参考注意事项和常见问题): fields:适用于所有数据类型 fields-scores:适用于sorted set数据类型 array:适用于list、set、sorted set数据类型 array-scores:适用于sorted set数据类型 map:适用于hash、sorted set数据类型 schema-syntax取值约束详见schema-syntax取值约束说明。 deploy-mode 否 standalone String Redis集群的部署模式,支持standalone、master-replica、cluster。默认为standalone。 Redis实例类型不同配置的部署模式不同: 单机、主备、proxy集群实例都选择standalone, cluster实例选择cluster。 retry-count 否 5 Integer 连接redis集群的尝试次数。 connection-timeout-millis 否 10000 Integer 尝试连接redis集群时的最大超时时间。 commands-timeout-millis 否 2000 Integer 等待操作完成响应的最大时间。 rebalancing-timeout-millis 否 15000 Integer redis集群失败时的休眠时间。 scan-keys-count 否 1000 Integer 每次扫描时读取的数量。 default-score 否 0 Double 当data-type设置为“sorted-set”时的默认score。 deserialize-error-policy 否 fail-job Enum 数据解析失败时的处理方式。枚举类型,包含以下值: fail-job:作业失败 skip-row:跳过当前数据 null-field:设置当前数据为null skip-null-values 否 true Boolean 是否跳过null。 ignore-retractions 否 false Boolean 连接器应忽略更新插入/撤回流模式下的收回消息。 key-column 否 无 String Redis 表schema的key source.parallelism 否 无 int 定义源的自定义并行度。默认情况下,如果未定义此选项,使用全局配置来的并行度。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- ...
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333