华为云用户手册

  • 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2406-aarch64-snt9b-20240910112800-2a95df3 cann_8.0.rc3
  • 约束限制 本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts 6.3.909版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 适配的CANN版本是cann_8.0.rc3。 Server驱动版本要求23.0.6。
  • 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • Step2 修改训练超参配置 以llama2-70b和llama2-13b预训练为例,执行脚本为0_pl_pretrain_70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/ws/tokenizers/llama2-13B 该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEIGHT路径相同。如果用户需要将Hugging Face权重与tokenizer文件分开存放时,则需要修改参数。 INPUT_PRO CES SED_DIR /home/ma-user/ws/llm_train/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的CKPT、P LOG 、LOG文件。示例中,默认统一保存在“saved_dir_for_output”文件夹下。如果用户需要修改,可添加并自定义该变量。 CKPT_SAVE_PATH /home/ma-user/ws/llm_train/saved_dir_for_output/saved_models/llama2-13b 保存训练生成的模型CKPT文件。示例中,默认保存在“saved_dir_for_output/saved_models”文件夹下。如果用户需要修改,可添加并自定义该变量。 LOG_SAVE_PATH /home/ma-user/ws/llm_train/saved_dir_for_output/saved_models/llama2-13b/log 保存训练过程记录的日志LOG文件。示例中,默认保存在“saved_models/llama2-13b/log”文件夹下。如果用户需要修改,可添加并自定义该变量。 ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志PLOG文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • sft_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: sft do_train: true finetuning_type: full deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: identity,alpaca_en_demo template: qwen cutoff_len: 4096 packing: true max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/tokenizers/Qwen2-72B/sft logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-5 num_train_epochs: 10.0 lr_scheduler_type: cosine warmup_ratio: 0.1 fp16: true ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • lora_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: sft do_train: true finetuning_type: lora lora_target: all deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: identity,alpaca_en_demo template: qwen cutoff_len: 4096 packing: true max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/tokenizers/Qwen2-72B/lora logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-5 num_train_epochs: 10.0 lr_scheduler_type: cosine warmup_ratio: 0.1 fp16: true ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • ds_z1_config.json样例模板 { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "zero_optimization": { "stage": 1, "allgather_partitions": true, "allgather_bucket_size": 5e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 5e8, "contiguous_gradients": true, "round_robin_gradients": true } }
  • Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir} |──llm_train # 模型训练代码包 |──AscendFactory |──config/ # 配置文件 |──deepspeed/ # deepspeed配置json文件 |──modellink_performance_cfgs.yaml # ModelLink训练配置json文件 |──....... |──data.tgz #样例数据压缩包 |──intall.sh # 需要的依赖包 |──scripts_modellink/ # modelLink兼容旧版本启动方式目录 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen2.5 # Qwen2.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |──third-party/ # patch包 |──src/acs_train_solution/ # 训练运行包 |──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance.py # benchmark训练性能比较启动脚本 |──accuracy.py # benchmark训练精度启动脚本 |──model/Qwen2-7B/ # 权重词表文件目录,如Qwen2-7B |──training_data # 原始数据目录 |──alpaca_gpt4_data.json # 微调数据 |──train-00000-of-00001-a09b74b3ef9c3b56.parquet #预训练数据 |──{output_dir} #{OUTPUT_SAVE_DIR}或yaml文件{output_dir}参数设置值 # 自动生成数据目录结构 |── preprocessed_data |──converted_hf2mg_weight_TP${TP}PP${PP} |──checkpoint # 训练完成生成目录Qwen2-7B,自动生成
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.912中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendFactory |──examples/ # config配置文件目录 |──data.tgz # 样例数据压缩包 |──third-party/ # patch包 |──src/acs_train_solution/ # 训练运行包 |──intall.sh # 需要的依赖包 |──scripts_llamafactory/ # llamafactory兼容旧版本启动方式目录 |──scripts_modellink/ # modelLink兼容旧版本启动方式目录 |──Dockerfile
  • 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录服务器。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如SFS Turbo的路径:/mnt/sfs_turbo目录下,以下都以/mnt/sfs_turbo为例,请根据实际修改。 unzip AscendCloud-*.zip unzip AscendCloud-LLM-*.zip Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务如产生mc2融合算子错误,可参考mc2融合算子报错 上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/mnt/sfs_turbo,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /mnt/sfs_turbo mkdir -p models/Llama2-70B
  • 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend: 8*ascend-snt9b”。 图1 Notebook中选择自定义镜像与规格 云硬盘EVS是Notebook开发环境内存的存储硬盘,作为持久化存储挂载在/home/ma-user/work目录下,该目录下的内容在实例停止后会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。 图2 自定义存储配置
  • 使用基础镜像 通过E CS 获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
  • 常见APP认证报错分析 报错信息 "error_msg": "The API does not exist or has not been published in the environment", "error_code": "APIG.0101" 该报错需要检查App认证API是否还存在或者URL是否正确。 报错信息 "error_msg": "Incorrect app authentication information: app not found with specified appCode", "error_code": "APIG.0303" 该报错需要检查请求头Headers参数中X-Apig-AppCode参数的值是否填错。 报错信息 "error_msg": "Backend unavailable", "error_code": "APIG.0202" 该报错信息需要检查dispatcher实例是否正常。
  • 场景描述 APPcode认证是一种简易的API调用认证方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。在ModelArts中,支持在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。
  • Step2 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240606190017-b881580 CANN:cann_8.0.rc2 PyTorch:2.1.0
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_2_ascend:pytorch_2.2.0-cann_8.0.rc3-py_3.10-hce_2.0.2406-aarch64-snt9b-20240910150953-6faa0ed 表2 模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.2.0
  • 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 步骤三 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如llamafactory。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如: chmod -R 777 /home/ma-user/ws 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 使用ma-user用户安装依赖包。 #进入scripts目录换 cd /home/ma-user/ws/llm_train/LLaMAFactory #执行安装命令,安装依赖包及/LLaMAFactory代码包 sh install.sh
  • 投机推理benchmark验证 本章节介绍如何进行投机推理benchmark验证,当前投机推理benchmark仅支持在Notebook中进行测试。 进入benchmark_tools目录下。 cd benchmark_tools 运行验证脚本speculative_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python speculative_benchmark_parallel.py --backend vllm --host ${docker_ip} --port 8080 --dataset human-eval-v2-20210705.jsonl \ --tokenizer /path/to/tokenizer --num-prompts 80 \ --output_len 4096 --trust-remote-code --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.jsonl数据集,数据集可从https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz下载压缩包解压获得。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --num-prompts:某个频率下请求数,默认80。 --output_len:输出长度,默认是1024。 --trust-remote-code:是否相信远程代码。 脚本运行完后,测试结果直接在终端输出。
  • 约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。 同步请求时,平台每次请求预测的时间不能超过60秒。例如输出数据比较大的调用请求(例如输出大于1k),请求预测会超过60秒导致调用失败,可提交工单设置请求超时时间。
  • 动态benchmark 获取测试数据集。 动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_serving.py --backend vllm --host 127.0.0.1 --port 8080 --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv 生产环境中进行测试: python benchmark_serving.py --backend vllm --url xxx --app-code xxx --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图3 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是huggingface的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图4 动态benchmark测试结果(示意图)
  • benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt
  • 静态benchmark 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_parallel.py --backend vllm --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 生产环境中进行测试: python benchmark_parallel.py --backend vllm --url xxx --app-code xxx --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 参数说明: --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --epochs:测试轮数,默认取值为5。 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图2 静态benchmark测试结果(示意图)
  • Ascend-vLLM支持的特性介绍 表1 Ascend-vLLM支持的特性 特性名称 特性说明 调度 Page-attention 分块管理kvcache,提升吞吐。 Continuous batching 迭代级调度,动态调整batch,降低延迟,提升吞吐。 Multi-step 一次调度多次推理,降低调度上的cpu-overhead。 量化 W4A16-AWQ、GPTQ 权重Int4量化,降低显存消耗和时延。小并发时延提升80%,精度损失2%以内。 W8A8-smoothQuant 权重Int8量化,降低显存消耗,吞吐提升30%;精度损失1.5%以内。 W8A16-GPTQ Int8量化,降低显存消耗,提高吞吐20%。精度损失1%以内。 Kv8 Kv-cache量化,提高吞吐,支持更长序列。 高效解码 Auto-prefix-caching 前缀缓存,降低首token时延。在system prompt较长或多轮对话场景收益明显 Chunked-prefill 又名split-fuse。全量增量同时推理,提高资源利用率,提升吞吐。 Speculative Decoding 支持大小模型投机推理和eager模式投机,提升推理性能。 图模式 Cuda-graph/cann-graph 记录算子执行的依赖关系构图;消除python host耗时;且支持动态shape。 Torch.compile Torch.dynamo构图,转ascend-GE后端推理;使用静态分档。 实例复用 Multi-lora 多lora挂载,多个不同微调模型共用一份权重同时部署。 控制输出 Guided Decoding 通过特定模式控制模型输出。 Beam search 通过beamsearch输出多个候选结果。 分离部署 PD分离部署 全量、增量分离部署,提高资源利用率,提升体验。 剪枝 FASP (Fast and Accurate Structured Pruning) 剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
  • 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。 吞吐量(tokens/s/p):global batch size*seq_length/(总卡数*elapsed time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图)
  • CCE集群关联SFS Turbo 进入已购买创建的CCE集群,选择存储,随后单击“创建存储卷声明PVC”。 选择“极速文件存储”,随后输入PVC名称。 选择“新建存储卷PV”,并单击“选择极速文件存储”。 进入选择页面,选择已经创建好的SFS Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图: 挂载完成后,可通过以下步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全