华为云用户手册

  • 日志函数 hll主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式,这种模式下distinct值的计算是没有误差的;随着distinct值越来越多,hll会先后转换为Sparse模式和Full模式,这两种模式在计算结果上没有任何区别,只影响hll函数的计算效率和hll对象的存储空间。下面的函数可以用于查看hll的一些参数。 hll_print(hll) 描述:打印hll的一些debug参数信息。 示例: 1 2 3 4 5 openGauss=# SELECT hll_print(hll_empty()); hll_print ------------------------------------------------------------------------------- type=1(HLL_EMPTY), log2m=14, log2explicit=10, log2sparse=12, duplicatecheck=0 (1 row)
  • 功能函数 hll_empty() 描述:创建一个空的hll。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_empty(); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m) 描述:创建空的hll并指定参数log2m,取值范围是10到16。若输入-1,则采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(-1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit) 描述:创建空的hll并依次指定参数log2m、log2explicit。log2explicit取值范围是0到12,0表示直接跳过Explicit模式。该参数可以用来设置Explicit模式的阈值大小,在数据段长度达到2log2explicit后切换为Sparse模式或者Full模式。若输入-1,则log2explicit采用内置默认值。 返回值类型: hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse。log2sparse取值范围是0到14,0表示直接跳过Sparse模式。该参数可以用来设置Sparse模式的阈值大小,在数据段长度达到2log2sparse后切换为Full模式。若输入-1,则log2sparse采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4, 8); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, 4, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse, int32 duplicatecheck) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse、duplicatecheck。duplicatecheck取0或者1,表示是否开启该模式,默认情况下该模式会关闭。若输入-1,则duplicatecheck采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4, 8, 0); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, 4, 8, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) hll_add(hll, hll_hashval) 描述:把hll_hashval加入到hll中。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_add(hll_empty(), hll_hash_integer(1)); hll_add ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_add_rev(hll_hashval, hll) 描述:把hll_hashval加入到hll中,和hll_add功能一样,只是参数位置进行了交换。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_add_rev(hll_hash_integer(1), hll_empty()); hll_add_rev ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_eq(hll, hll) 描述:比较两个hll是否相等。 返回值类型:bool 示例: 1 2 3 4 5 openGauss=# SELECT hll_eq(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_eq -------- f (1 row) hll_ne(hll, hll) 描述:比较两个hll是否不相等。 返回值类型:bool 示例: 1 2 3 4 5 openGauss=# SELECT hll_ne(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_ne -------- t (1 row) hll_cardinality(hll) 描述:计算hll的distinct值。 返回值类型:int 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_empty() || hll_hash_integer(1)); hll_cardinality ----------------- 1 (1 row) hll_union(hll, hll) 描述:把两个hll数据结构union成一个。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_union(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_union -------------------------------------------------------------------------------------------- \x484c4c10002000002b090000000000000000400000000000000000b3ccc49320cca1ae3e2921ff133fbaed00 (1 row)
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 //以下用例以gsjdbc4.jar为例。 //以下代码将获取数据库连接操作封装为一个接口,可通过给定用户名和密码来连接数据库。 public static Connection getConnect(String username, String passwd) { //驱动类。 String driver = "org.postgresql.Driver"; //数据库连接描述符。 String sourceURL = "jdbc:postgresql://$ip:$port/postgres"; Connection conn = null; try { //加载驱动。 Class.forName(driver); } catch( Exception e ) { e.printStackTrace(); return null; } try { //创建连接。 conn = DriverManager.getConnection(sourceURL, username, passwd); System.out.println("Connection succeed!"); } catch(Exception e) { e.printStackTrace(); return null; } return conn; } // 以下代码将使用Properties对象作为参数建立连接 public static Connection getConnectUseProp(String username, String passwd) { //驱动类。 String driver = "org.postgresql.Driver"; //数据库连接描述符。 String sourceURL = "jdbc:postgresql://$ip:$port/postgres?autoBalance=true"; Connection conn = null; Properties info = new Properties(); try { //加载驱动。 Class.forName(driver); } catch( Exception e ) { e.printStackTrace(); return null; } try { info.setProperty("user", userName); info.setProperty("password", password); //创建连接。 conn = DriverManager.getConnection(sourceURL, info); System.out.println("Connection succeed!"); } catch(Exception e) { e.printStackTrace(); return null; } return conn; }
  • 参数 表1 数据库连接参数 参数 描述 url gsjdbc4.jar数据库连接描述符。格式如下: jdbc:postgresql:database jdbc:postgresql://host/database(端口值缺省会使用默认端口) jdbc:postgresql://host:port/database jdbc:postgresql://host:port/database?param1=value1¶m2=value2 jdbc:postgresql://host1:port1,host2:port2/database?param1=value1¶m2=value2 说明: 使用gsjdbc200.jar时,将“jdbc:postgresql”修改为“jdbc:gaussdb” database为要连接的数据库名称。 host为数据库服务器名称或IP地址。 由于安全原因,数据库CN禁止集群内部其他节点无认证接入。如果要在集群内部访问CN,请将JDBC程序部署在CN所在机器,host使用"127.0.0.1"。否则可能会出现“FATAL: Forbid remote connection with trust method!”错误。 建议业务系统单独部署在集群外部,否则可能会影响数据库运行性能。 缺省情况下,连接服务器为localhost。 port为数据库服务器端口。 缺省情况下,会尝试连接到5431端口的database。 param为参数名称,即数据库连接属性。 参数可以配置在URL中,以"?"开始配置,以"="给参数赋值,以"&"作为不同参数的间隔。也可以采用info对象的属性方式进行配置,详细示例会在本节给出。 value为参数值,即数据库连接属性值。 连接时需配置connectTimeout和socketTimeout,如果未配置,默认为0,即不会超时。在DN与客户端出现网络故障时,客户端一直未收到DN侧ACK确认报文,会启动超时重传机制,不断地进行重传。当重传次数达到默认的15次后才会报超时错误,会导致RTO时间很高。 分布式环境下,连接串建议配置autoBalance参数进行负载均衡,同时配置至少两个CN节点,避免因节点故障无法正常建连。 info 数据库连接属性(所有属性大小写敏感)。常用的属性如下: PGDBNAME:String类型。表示数据库名称(URL中无需配置该参数,自动从URL中解析)。 PGHOST:String类型。主机IP地址。若配置多个CN,它们的IP和端口用“:”分隔,并作为整体以逗号分隔其他CN(URL中无需配置该参数,自动从URL中解析)。 PGPORT:Integer类型。主机端口号。若配置多个CN,它们的端口号和IP用":"分隔,并作为整体以逗号分隔其他CN(URL中无需配置该参数,自动从URL中解析)。 user:String类型。表示创建连接的数据库用户。 password:String类型。表示数据库用户的密码。 loggerLevel:String类型。缺省值为NULL,与设置为INFO等效。目前支持4种级别:OFF、INFO、DEBUG、TRACE。设置为OFF关闭日志。设置为INFO、DEBUG和TRACE记录的日志信息详细程度不同。 loggerFile:String类型。用于指定日志输出路径(目录和文件名)。若只指定文件名,未指定目录则日志生成在客户端运行程序目录;若不配置或配置的路径不存在,则日志会默认通过流输出。此参数已废弃,不再生效,如需使用可通过 java.util.logging 属性文件或系统属性进行配置。 logger:String类型。表示JDBC Driver要使用的日志输出框架。JDBC Driver支持对接用户应用程序使用的日志输出框架。目前支持的第三方日志输出框架只有基于Slf4j-API的日志框架。具体使用方式,见6.2.9日志管理。 如果缺省或设置为JDK LOG GER,则JDBC Driver使用JDK LOGGER。 否则必须设置采用基于slf4j-API 第三方日志框架。 allowEncodingChanges:Boolean类型,缺省值为false。设置该参数值为“true”进行字符集类型更改,配合参数characterEncoding=CHARSET设置字符集,二者使用"&"分隔;characterEncoding取值范围{UTF8、GBK、LATIN1、GB18030}。 currentSchema:String类型。在search-path中指定要设置的schema。如果Schema名包含除字母、数字、下划线之外的特殊字符,建议在Schema名上加引号,注意加引号后Schema名大小写敏感。如需配置多个Schema,要用逗号(,)进行分隔,包含特殊字符的Schema也需要加引号处理。 例如:currentSchema=schema_a,"schema-b","schema/c"。 loadBalanceHosts:Boolean类型。在默认模式下(禁用),顺序连接URL中指定的多个主机。如果启用,则使用洗牌算法从候选主机中随机选择一个主机建立连接。 autoBalance:String类型。 设置为true或balance或roundrobin表示开启JDBC负载均衡功能,将应用程序的多个连接均衡到数据库集群中的各个可用CN。 例如:jdbc:postgresql://host1:port1,host2:port2/database?autoBalance=true JDBC将定期获取(周期刷新可使用参数refreshCNIpListTime配置,默认为10s)整个集群可用CN列表(注意CN列表中获取的host是数据IP),比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4。 host1和host2在autoBalance启用时,仅在首次连接做高可用用途,后续Driver将从host1,host2,host3,host4中依次选择可用的CN刷新可用CN列表,后续用户新建的connection将使用RoundRobin算法从host1,host2,host3,host4选取CN主机进行连接。 设置为priorityn表示开启JDBC优先级负载均衡功能,将应用程序的多个连接首先均衡到url上配置的前n个中可用的CN数据库节点,当url上配置前n个节点全部不可用时,连接会随机分配到数据库集群中其他可用CN数据库节点。n为数字,不小于0,且小于url上配置的CN数量。 例如:jdbc:postgresql://host1:port1,host2:port2,host3:port3,host4:port4/database?autoBalance=priority2 JDBC将定期获取(周期按refreshCNIpListTime定义)整个集群可用CN列表,比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4,host5:port5,host6:port6,其中host1和host2处于AZ1,host3和host4处于AZ2。 Driver将从优先从host1,host2中做负载均衡,host1和host2全部不可用才从host3, host4, host5, host6中随机选择CN主机连接。 设置为shuffle表示开启JDBC随机负载均衡功能,将应用程序的多个连接随机均衡到数据库集群中的各个可用CN。 例如:jdbc:postgresql://host1:port1,host2:port2,host3:port3/database?autoBalance=shuffle JDBC将定期获取(周期刷新可使用参数refreshCNIpListTime配置,默认为10S)整个集群的可用CN列表,比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4。 host1:port1,host2:port2,host3:port3,仅在首次连接做高可用,后续连接将在刷新后的CN列表中,使用shuffle算法随机选用一个CN节点进行连接。 设置为false,不开启JDBC负载均衡功能和优先级负载均衡功能。默认为false。 注意: 负载均衡是基于连接级别,不是基于事务级别。如果连接是长连接,并且连接上的负载不均衡,无法保证CN主机上的负载是均衡的。 负载均衡仅能在分布式场景下使用。 在开启负载均衡时,URL中可以配置浮动IP或数据IP,如果配置为浮动IP,系统会根据浮动IP获取对应的数据IP,通过获取的数据IP做负载均衡。因此URL中配置浮动IP或数据IP时,都需要确保数据IP网络连接正常,否则负载均衡功能异常。 refreshCNIpListTime:Integer类型。获取CN列表的缓存有效时间。JDBC在建连时会检测数据库集群中CN状态,在refreshCNIpListTime时间内可信。超过则状态失效,下次建连时再次获取可用CN的IP列表。默认为10秒。 hostRecheckSeconds:Integer类型。JDBC尝试连接主机后会保存主机状态:连接成功或连接失败。在hostRecheckSeconds时间内保持可信,超过则状态失效。缺省值是10秒。 ssl:Boolean类型。以SSL方式连接。 ssl=true可支持NonValidatingFactory通道和使用证书的方式: 1、NonValidatingFactory通道需要配置用户名和密码,同时将SSL设置为true。 2、配置客户端证书、密钥、根证书,将SSL设置为true。 sslmode:String类型。SSL认证方式。取值范围为:disable、allow、prefer、require、verify-ca、verify-full。 disable:不使用SSL安全连接。 allow:如果数据库服务器要求使用,则可以使用SSL安全加密连接,但不验证数据库服务器的真实性。 prefer:如果数据库支持,那么首选使用SSL连接,但不验证数据库服务器的真实性。 require只尝试SSL连接,不会检查服务器证书是否由受信任的CA签发,且不会检查服务器主机名与证书中的主机名是否一致。 verify-ca只尝试SSL连接,并且验证服务器是否具有由可信任的证书机构签发的证书。 verify-full只尝试SSL连接,并且验证服务器是否具有由可信任的证书机构签发的证书,以及验证服务器主机名是否与证书中的一致。 sslcert:String类型。提供证书文件的完整路径。客户端和服务端证书的类型为End Entity。 sslkey:String类型。提供密钥文件的完整路径。如果客户端证书不是DER格式,使用时将客户端证书转换为DER格式,生成方式参考连接数据库(以SSL方式)章节。 sslrootcert:String类型。SSL根证书的文件名。根证书的类型为CA。 sslpassword:String类型。提供给ConsoleCallbackHandler使用。 sslpasswordcallback:String类型。SSL密码提供者的类名。缺省值:org.postgresql.ssl.jdbc4.LibPQFactory.ConsoleCallbackHandler。 sslfactory:String类型。提供的值是SSLSocketFactory在建立SSL连接时用的类名。 sslprivatekeyfactory: String类型。提供的值是实现私钥解密方法的接口org.postgresql.ssl.PrivateKeyFactory的实现类的完整限定类名。如果不提供,首先尝试默认的jdk私钥解密算法,如果无法解密,则使用org.postgresql.ssl.BouncyCastlePrivateKeyFactory,用户需要自己提供bcpkix-jdk15on.jar包,版本建议:1.65以上。 sslfactoryarg:String类型。此值是上面提供的sslfactory类的构造函数的可选参数(不推荐使用本参数)。 sslhostnameverifier:String类型。主机名验证程序的类名。接口实现javax.net.ssl.HostnameVerifier,默认使用org.postgresql.ssl.PGjdbcHostnameVerifier。 loginTimeout:Integer类型。指建立数据库连接的等待时间。超时时间单位为秒。当url配置多IP时,若获取连接花费的时间超过此值,则连接失败,不再尝试后续IP。 connectTimeout:Integer类型。用于连接服务器操作的超时值。如果连接到服务器花费的时间超过此值,则连接断开。超时时间单位为秒,值为0时表示已禁用,timeout不发生。当url配置多IP时,表示连接单个IP的超时时间。 socketTimeout:Integer类型。用于socket读取操作的超时值。如果从服务器读取所花费的时间超过此值,则连接关闭。超时时间单位为秒,值为0时表示已禁用,timeout不发生。 当JDBC侧触发超时且连接关闭时,其下发给数据库侧正在运行的业务会被强制终止。该能力受GUC参数check_disconnect_query控制,设置为on表示支持该能力,设置为off表示不支持该能力。 socketTimeoutInConnecting:Integer类型。用于控制建立连接阶段socket读取操作的超时值。如果建立连接时从服务器读取所花费的时间超过此值,则查找下一个节点建立连接。超时时间单位为秒,默认为5s。 driverInfoMode:String类型。用于控制驱动描述信息的输出模式。取值范围为postgresql、gaussdb,默认缺省值为postgresql,输出postgresql相关的驱动描述信息;设置为gaussdb时输出gaussdb相关的驱动描述信息。 cancelSignalTimeout:Integer类型。发送取消消息本身可能会阻塞,用于控制取消命令的“connect超时”和“socket超时”。如果取消命令超过指定时间未响应,会中断这个连接,减少占用客户端资源。超时时间单位为秒,默认值为10秒。 tcpKeepAlive:Boolean类型。启用或禁用TCP保活探测功能。默认为false。 logUnclosedConnections:Boolean类型,缺省值为false。客户端可能由于未调用Connection对象的close()方法而泄漏Connection对象。最终这些对象将被垃圾回收,并且调用finalize()方法。设置为true之后,如果调用者自己忽略了此操作,该方法将关闭Connection。 assumeMinServerVersion(废弃):String类型。该参数设置要连接的服务器版本。 ApplicationName:String类型。设置正在使用连接的应用程序名称。通过在CN上查询pgxc_stat_activity表可以看到正在连接的客户端信息,显示在application_name列。缺省值为PostgreSQL JDBC Driver。 connectionExtraInfo:Boolean类型。表示驱动是否上报当前驱动的部署路径、进程属主用户、url连接配置信息到数据库。 取值范围:true或false,默认值为false。设置connectionExtraInfo为true,JDBC驱动会将当前驱动的部署路径、进程属主用户、url连接配置信息上报到数据库中,记录在connection_info参数里;同时可以在PG_STAT_ACTIVITY和PGXC_STAT_ACTIVITY中查询到。 autosave:String类型。共有3种:"always", "never", "conservative"。如果查询失败,指定驱动程序应该执行的操作。在autosave=always模式下,JDBC驱动程序在每次查询之前设置一个保存点,并在失败时回滚到该保存点。在autosave=never模式(默认)下,无保存点。在autosave=conservative模式下,每次查询都会设置保存点,但是只会在“statement XXX无效”等情况下回滚并重试。 protocolVersion:Integer类型。连接协议版本号,目前仅支持1和3。注意:设置1时仅代表连接的是V1服务端。设置3时将采用md5加密方式,需要同步修改数据库的加密方式,将GUC参数password_encryption_type设置为1,重启数据库生效后需要创建用md5方式加密口令的用户。同时修改pg_hba.conf,将客户端连接方式修改为md5。用新建用户进行登录(因为设置这个值后,只能使用低等级的加密方式(md5),降低安全性,所以此值不推荐设置)。 说明: MD5加密算法安全性低,存在安全风险,建议使用更安全的加密算法。 prepareThreshold:Integer类型。该值决定着PreparedStatement对象在执行多少次以后使用服务端已经准备好的statement。默认值是5,意味着在执行同一个PreparedStatement对象时,在第五次以及以上执行时不再向服务端发送parse消息对statement进行解析,而使用之前在服务端已经解析好的statement。 preparedStatementCacheQueries:Integer类型。该参数确定了每个连接的cache缓存Statement对象生成query的最大个数。默认值为256,若Statement对象生成query个大于256则会将最近最少使用的query从缓存中丢弃。0表示禁用缓存。 preparedStatementCacheSizeMiB:Integer类型,该参数确定了每个连接的cache缓存Statement对象所生成query的最大值(以兆字节为单位),默认情况下是5。若缓存了超过5MB的query,则最近最少使用的查询缓存将被丢弃。0表示禁用缓存。 databaseMetadataCacheFields:Integer类型。默认值是65536。指定每个连接可缓存的最大字段的个数。“0”表示禁用缓存。 databaseMetadataCacheFieldsMiB:Integer类型。默认值是5。指定每个连接可缓存的字段的最大值,单位是MB。“0”表示禁用缓存。 stringtype:String类型,可选字段为:"unspecified", "varchar"。设置通过setString()方法使用的PreparedStatement参数的类型,如果stringtype设置为VARCHAR(默认值),则这些参数将作为varchar参数发送给服务器。若stringtype设置为unspecified,则参数将作为untyped值发送到服务器,服务器将尝试推断适当的类型。 batchMode:String类型。用于确定是否使用batch模式连接。默认值为on,表示开启batch模式。设置batchMode=on执行成功的返回结果为[count, 0, 0...0],数组第一个元素为批量影响的总条数,设置batchMode=off执行成功的返回结果为[1, 1, 1...1],数组各元素对应单次修改的影响条数。 fetchsize:Integer类型。用于设置数据库连接所创建statement的默认fetchsize。默认值为0,表示一次获取所有结果。与defaultRowFetchSize等价,如果同时设置,以fetchsize为准。 reWriteBatchedInserts:Boolean类型。批量导入时,该参数设置为true,可将N条插入语句合并为一条:insert into TABLE_NAME values(values1, ..., valuesN), ..., (values1, ..., valuesN);使用该参数时,需设置batchMode=off。 unknownLength:Integer类型,默认为Integer.MAX_VALUE。某些PostgreSQL类型(例如TEXT)没有明确定义的长度,当通过ResultSetMetaData.getColumnDisplaySize和ResultSetMetaData.getPrecision等函数返回关于这些类型的数据时,此参数指定未知长度类型的长度。 defaultRowFetchSize:Integer类型。确定一次fetch在ResultSet中读取的行数。限制每次访问数据库时读取的行数可以避免不必要的内存消耗,从而避免OutOfMemoryException。缺省值是0,这意味着ResultSet中将一次获取所有行。本参数不允许设置为负值。 binaryTransfer:Boolean类型。使用二进制格式发送和接收数据,默认值为“false”。 binaryTransferEnable:String类型。启用二进制传输的类型列表,以逗号分隔。OID编号和名称二选一,例如binaryTransferEnable=INT4_ARRAY,INT8_ARRAY。 比如:OID名称为BLOB,编号为88,可以如下配置: binaryTransferEnable=BLOB 或 binaryTransferEnable=88 binaryTransferDisable:String类型。禁用二进制传输的类型列表,以逗号分隔。OID编号和名称二选一。覆盖binaryTransferEnable的设置。 blobMode:String类型。用于设置setBinaryStream方法绑定参数的数据类型,当该值为on时表示setBinaryStream绑定的数据类型为blob类型,为off时表示绑定的数据类型为bytea类型,默认为on。建议从Oracle、Mysql迁移来的系统将该值设定为on,从PostgreSQL迁移来的系统设定为off。 socketFactory:String类型。用于创建与服务器socket连接的类的名称。该类必须实现接口“javax.net.SocketFactory”,并定义无参或单String参数的构造函数。 socketFactoryArg:String类型。此值是上面提供的socketFactory类的构造函数的可选参数,不推荐使用。 receiveBufferSize:Integer类型。该值用于设置连接流上的SO_RCVBUF。 sendBufferSize:Integer类型。该值用于设置连接流上的SO_SNDBUF。 preferQueryMode:String类型。共有4种:"extended", "extendedForPrepared", "extendedCacheEverything", "simple"。用于指定执行查询的模式,默认值为extended。simple模式只发送Q消息,仅支持文本模式,不支持parse与bind;extended模式会使用parse、bind和execute消息;extendedForPrepared模式下只有Prepared Statement对象使用扩展查询,Statement对象只使用简单查询;extendedCacheEverything模式会缓存每个Statement对象所生成的query。 ApplicationType:String类型。共有2种:"not_perfect_sharding_type","perfect_sharding_type"。用于设置是否开启分布式写入和查询,默认值为"not_perfect_sharding_type"。not_perfect_sharding_type模式下开启分布式写入和查询;perfect_sharding_type模式下默认禁止分布式写入和查询,只有在sql文中加入/* multinode */ 才能执行分布式写入和查询。该项设置只有数据库处于gtm free场景的情况下才会有效。 priorityServers:Integer类型。此值用于指定url上配置的前n个节点作为主集群被优先连接。默认值为null。该值为数字,大于0,且小于url上配置的CN数量。用于流式容灾场景。 例如:jdbc:postgresql://host1:port1,host2:port2,host3:port3,host4:port4,/database?priorityServers=2。即表示host1与host2为主集群节点,host3与host4为容灾集群节点。 usingEip:Boolean类型。此值用于控制是否使用弹性公网IP做负载均衡。默认值为true,表示使用弹性公网IP做负载均衡;false表示使用数据IP做负载均衡。 traceInterfaceClass:String类型。默认值为null,用于获取traceId的实现类。值是实现获取traceId方法的接口org.postgresql.log.Tracer的实现类的完整限定类名。 use_boolean:Boolean类型。用于设置extended模式下setBoolean方法绑定的oid类型,默认为false,绑定int2类型;设置为true则绑定bool类型。 allowReadOnly:Boolean类型。用于设置是否允许只读模式,默认为true,允许设置只读模式;设置为false则禁用只读模式。 TLSCiphersSupperted:String类型。用于设置支持的TLS加密套件,默认为TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384。 stripTrailingZeros:Boolean类型。默认值为false,设置为true则去除numeric类型后尾随的0,仅对ResultSet.getObject(int columnIndex)生效。 enableTimeZone:Boolean类型。默认值为true,用于指定是否启用服务端时区设置,true表示获取JVM时区指定数据库时区,false表示使用数据库时区。 socketTimeoutInConnecting:Integer类型。默认值5s,用于建立连接时socket读取操作的超时值。如果在建连过程中,从服务器读取所花费的时间超过此值,则连接关闭。超时时间单位为秒,值为0时表示已禁用,timeout不发生。 driverInfoMode:String类型。用于控制驱动描述信息的输出模式。取值范围为postgresql、gaussdb,默认缺省值为postgresql,输出PostgreSQL相关的驱动描述信息,设置为gaussdb时输出gaussdb相关的驱动描述信息。 user 数据库用户。 password 数据库用户的密码。
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB _driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 并行解码 以下配置选项仅限流式解码设置。 decode-style: 指定解码格式。 取值范围:char型的字符'j'、't'或'b',分别代表json格式,text格式及二进制格式。默认值为'b'即二进制格式解码。 对于json格式和text格式解码,开启批量发送选项时的解码结果中,每条解码语句的前4字节组成的uint32代表该条语句总字节数(不包含该uint32类型占用的4字节,0代表本批次解码结束),8字节uint64代表相应lsn(begin对应first_lsn,commit对应end_lsn,其他场景对应该条语句的lsn)。 二进制格式编码规则如下所示: 前4字节代表接下来到语句级别分隔符字母P(不含)或者该批次结束符F(不含)的解码结果的总字节数,该值如果为0代表本批次解码结束。 接下来8字节uint64代表相应lsn(begin对应first_lsn,commit对应end_lsn,其他场景对应该条语句的lsn)。 接下来1字节的字母有5种B/C/I/U/D,分别代表begin/commit/insert/update/delete。 第3.接下来1字节的字母有5种B/C/I/U/D,...步字母为B时。 接下来的8字节uint64代表 CS N。 接下来的8字节uint64代表first_lsn。 【该部分为可选项】接下来的1字节字母如果为T,则代表后面4字节uint32表示该事务commit时间戳长度,再后面等同于该长度的字符为时间戳字符串。 【该部分为可选项】接下来的1字节字母如果为N,则代表后面4字节uint32表示该事务用户名的长度,再后面等同于该长度的字符为事务的用户名字。 因为之后仍可能有解码语句,接下来会有1字节字母P或F作为语句间的分隔符,P代表本批次仍有解码的语句,F代表本批次完成。 第3.接下来1字节的字母有5种B/C/I/U/D,...步字母为C时: 【该部分为可选项】接下来1字节字母如果为X,则代表后面的8字节uint64表示xid。 【该部分为可选项】接下来的1字节字母如果为T,则代表后面4字节uint32表示时间戳长度,再后面等同于该长度的字符为时间戳字符串。 因为批量发送日志时,一个COMMIT日志解码之后可能仍有其他事务的解码结果,接下来的1字节字母如果为P则表示该批次仍需解码,如果为F则表示该批次解码结束。 第3.接下来1字节的字母有5种B/C/I/U/D,...步字母为I/U/D时: 接下来的2字节uint16代表schema名的长度。 按照上述长度读取schema名。 接下来的2字节uint16代表table名的长度。 按照上述长度读取table名。 【该部分为可选项】接下来1字节字母如果为N代表为新元组,如果为O代表为旧元组,这里先发送新元组。 接下来的2字节uint16代表该元组需要解码的列数,记为attrnum。 以下流程重复attrnum次。 接下来2字节uint16代表列名的长度。 按照上述长度读取列名。 接下来4字节uint32代表当前列类型的Oid。 接下来4字节uint32代表当前列的值(以字符串格式存储)的长度,如果为0xFFFFFFFF则表示NULL,如果为0则表示长度为0的字符串。 按照上述长度读取列值。 因为之后仍可能有解码语句,接下来的1字节字母如果为P则表示该批次仍需解码,如果为F则表示该批次解码结束。 sending-batch: 指定是否批量发送。 取值范围:0或1的int型,默认值为0。 0:设为0时,表示逐条发送解码结果。 1:设为1时,表示解码结果累积到达1MB则批量发送解码结果。 开启批量发送的场景中,当解码格式为'j'或't'时,在原来的每条解码语句之前会附加一个uint32类型,表示本条解码结果长度(长度不包含当前的uint32类型),以及一个uint64类型,表示当前解码结果对应的lsn。 parallel-queue-size: 指定并行逻辑解码线程间进行交互的队列长度。 取值范围:2~1024的int型,且必须为2的整数幂,默认值为128。 队列长度和解码过程的内存使用量正相关。
  • 串行解码 force-binary: 是否以二进制格式输出解码结果,针对不同场景呈现不同行为。 针对系统函数pg_logical_slot_get_binary_changes和pg_logical_slot_peek_binary_changes: 取值范围:bool型,默认值为false。此值无实际意义,均以二进制格式输出解码结果。 针对系统函数pg_logical_slot_get_changes、pg_logical_slot_peek_changes和pg_logical_get_area_changes: 取值范围:仅取false值的bool型。以文本格式输出解码结果。 针对流式解码: 取值范围:bool型,默认值为false。此值无实际意义,均以文本格式输出解码结果。
  • 通用选项(串行解码和并行解码均可配置,但可能无效,请参考相关选项详细说明) include-xids: 解码出的data列是否包含xid信息。 取值范围:0或1,默认值为1。 0:设为0时,解码出的data列不包含xid信息。 1:设为1时,解码出的data列包含xid信息。 skip-empty-xacts: 解码时是否忽略空事务信息。 取值范围:0或1,默认值为0。 0:设为0时,解码时不忽略空事务信息。 1:设为1时,解码时会忽略空事务信息。 include-timestamp: 解码信息是否包含commit时间戳。 取值范围:0或1,默认值为0。 0:设为0时,解码信息不包含commit时间戳。 1:设为1时,解码信息包含commit时间戳。 only-local: 是否仅解码本地日志。 取值范围:0或1,默认值为1。 0:设为0时,解码非本地日志和本地日志。 1:设为1时,仅解码本地日志。 white-table-list: 白名单参数,包含需要进行解码的schema和表名。 取值范围:包含白名单中表名的字符串,不同的表以','为分隔符进行隔离;使用'*'来模糊匹配所有情况;schema名和表名间以'.'分隔,不允许存在任意空白符。例如: select * from pg_logical_slot_peek_changes('slot1', NULL, 4096, 'white-table-list', 'public.t1,public.t2,*.t3,my_schema.*'); max-txn-in-memory: 内存管控参数,单位为MB,单个事务占用内存大于该值即进行落盘。 取值范围:0~100的整型,默认值为0,即不开启此种管控。 max-reorderbuffer-in-memory 内存管控参数,单位为GB,拼接-发送线程中正在拼接的事务总内存(包含缓存)大于该值则对当前解码事务进行落盘。 取值范围:0~100的整型,默认值为0,即不开启此种管控。 include-user: 事务的BEGIN逻辑日志是否输出事务的用户名。事务的用户名特指授权用户——执行事务对应会话的登录用户,它在事务的整个执行过程中不会发生变化。 取值范围:0或1,默认值为0。 0:设为0时,事物的BEGIN逻辑日志不输出事务的用户名。 1:设为1时,事物的BEGIN逻辑日志输出事务的用户名。 exclude-userids: 黑名单用户的OID参数。 取值范围:字符串类型,指定黑名单用户的OID,多个OID通过','分隔,不校验用户OID是否存在。 exclude-users: 黑名单用户的名称列表。 取值范围:字符串类型,指定黑名单用户名,通过','分隔,不校验用户名是否存在。 dynamic-resolution: 是否动态解析黑名单用户名。 取值范围:0或1,默认值为1。 0:设为0时,当解码观测到黑名单exclude-users中用户不存在时将会报错并退出逻辑解码。 1:设为1时,当解码观测到黑名单exclude-users中用户不存在时继续解码。 standby-connection: 仅流式解码设置,是否仅限制备机解码。 取值范围:bool型,默认值为false。 true:设为true时,仅允许连接备机解码,连接主机解码时会报错退出。 false:设为false时,不做限制,允许连接主机或备机解码。 sender-timeout: 仅流式解码设置,内核与客户端的心跳超时阈值。当该时间段内没有收到客户端任何消息时,逻辑解码将主动停止,并断开和客户端的连接。单位为毫秒(ms)。 取值范围:0~2147483647的int型,默认值取决于GUC参数logical_sender_timeout的配置值。 parallel-decode-num: 仅流式解码设置有效,并行解码的Decoder线程数量;系统函数调用场景下此选项无效,仅校验取值范围。 取值范围:取1表示按照原有的串行逻辑进行解码,取其余值表示开启并行解码,默认值为1。 当parallel-decode-num不配置(即为默认值1)或显式配置为1时,下述“并行解码”中的选项不可配置。
  • 配置JDK1.8 客户端需配置JDK1.8。JDK支持Windows、Linux等多种平台。下面以Windows为例,配置方法如下: DOS窗口(windows下的命令提示符)输入以下命令查看JDK版本。 java -version 确认为JDK1.8版本。如果未安装JDK,请从官方网站下载安装包并安装。 根据如下步骤配置系统环境变量。 右键单击“我的电脑”,选择“属性”。 在“系统”页面左侧导航栏单击“高级系统设置”。 在“系统属性”页面,“高级”页签上单击“环境变量”。 在“环境变量”页面上,“系统变量”区域单击“新建”或“编辑”配置系统变量。变量说明请参见表2。 表2 变量说明 变量名 操作 变量值 JAVA_HOME 若存在,则单击“编辑”。 若不存在,则单击“新建”。 JAVA的安装目录。 例如:C:\Program Files\Java\jdk1.8.0_131 Path 单击“编辑”。 若配置了JAVA_HOME,则在变量值的最前面加上: %JAVA_HOME%\bin 若未配置JAVA_HOME,则在变量值的最前面加上 JAVA安装的全路径: C:\Program Files\Java\jdk1.8.0_131\bin CLASSPATH 单击“新建”。 .;%JAVA_HOME%\lib;%JAVA_HOME%\lib\tools.jar
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 获取驱动jar包 解压获取到的驱动包,找到名为GaussDB-Kernel_数据库版本号_操作系统_64bit_Jdbc.tar.gz的JDBC驱动包并解压,解压后,可获得以下驱动jar包: gsjdbc4.jar:主类名为“org.postgresql.Driver”,数据库连接的url前缀为“jdbc:postgresql”。该驱动包适用于从PostgreSQL迁移业务的场景,驱动类和加载路径与迁移前保持一致,但接口支持情况不完全一致,未支持的接口需要业务侧进行调整。 opengaussjdbc.jar:主类名为“com.huawei.opengauss.jdbc.Driver”,数据库连接的url前缀为“jdbc:opengauss”,推荐使用此驱动包。如果遇到同一JVM进程内需要同时访问PostgreSQL及GaussDB的场景,请使用此驱动包。 各驱动包只是驱动类加载路径和url前缀不同,接口功能上相同。 gsjdbc200.jar:该驱动包适用于从Gauss200迁移业务的场景,驱动类和加载路径与迁移前保持一致,但接口支持情况不完全一致,未支持的接口需要业务侧进行调整。 不能使用gsjdbc4.jar驱动包操作PostgreSQL数据库,虽然部分版本能够建连成功,但部分接口行为与PostgreSQL JDBC不同,可能导致未知错误。 不能使用PostgreSQL的驱动包操作 GaussDB数据库 ,虽然部分版本能够建连成功,但部分接口行为与GaussDB JDBC不同,可能导致未知错误。
  • 废弃函数 由于版本升级,HLL(HyperLogLog)有一些旧的函数废弃,用户可以用类似的函数进行替代。 hll_schema_version(hll) 描述:查看当前hll中的schema version。旧版本schema version是常值1,用来进行hll字段的头部校验,重构后的hll在头部增加字段“HLL”进行校验,schema version不再使用。 hll_regwidth(hll) 描述:查看hll数据结构中桶的位数大小。旧版本桶的位数regwidth取值1~5,会存在较大的误差,也限制了基数估计上限。 重构后regwidth为固定值6,不再使用regwidth变量。 hll_expthresh(hll) 描述:得到当前hll中expthresh大小。采用hll_log2explicit(hll)替代类似功能。 hll_sparseon(hll) 描述:是否启用Sparse模式。采用hll_log2sparse(hll)替代类似功能,0表示关闭Sparse模式。
  • 内置函数 HLL(HyperLogLog)有一系列内置函数用于内部对数据进行处理,一般情况下用户不需要熟知这些函数的使用。详情见表1。 表1 内置函数 函数名称 功能描述 hll_in 以string格式接收hll数据。 hll_out 以string格式发送hll数据。 hll_recv 以bytea格式接收hll数据。 hll_send 以bytea格式发送hll数据。 hll_trans_in 以string格式接收hll_trans_type数据。 hll_trans_out 以string格式发送hll_trans_type数据。 hll_trans_recv 以bytea形式接收hll_trans_type数据。 hll_trans_send 以bytea形式发送hll_trans_type数据。 hll_typmod_in 接收typmod类型数据。 hll_typmod_out 发送typmod类型数据。 hll_hashval_in 接收hll_hashval类型数据。 hll_hashval_out 发送hll_hashval类型数据。 hll_add_trans0 类似于hll_add所提供的功能,初始化时无指定入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans1 类似于hll_add所提供的功能,初始化时指定一个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans2 类似于hll_add所提供的功能,初始化时指定两个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans3 类似于hll_add所提供的功能,初始化时指定三个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans4 类似于hll_add所提供的功能,初始化时指定四个入参,通常在聚合运算的第一阶段DN上使用。 hll_union_trans 类似hll_union所提供的功能,在聚合运算的第一阶段DN上使用。 hll_union_collect 类似于hll_union所提供的功能,在聚合运算第二阶段DN上使用,汇总各个DN上的结果。 hll_pack 在聚合运算第三阶段DN上使用,把自定义hll_trans_type类型最后转换成hll类型。 hll 用于hll类型转换成hll类型,根据输入参数会设定指定参数。 hll_hashval 用于bigint类型转换成hll_hashval类型。 hll_hashval_int4 用于int4类型转换成hll_hashval类型。
  • 聚合函数 hll_add_agg(hll_hashval) 描述:把哈希后的数据按照分组放到hll中。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 --准备数据 openGauss=# CREATE TABLE t_id(id int); openGauss=# INSERT INTO t_id VALUES(generate_series(1,500)); openGauss=# CREATE TABLE t_data(a int, c text); openGauss=# INSERT INTO t_data SELECT mod(id,2), id FROM t_id; --创建表并指定列为hll openGauss=# CREATE TABLE t_a_c_hll(a int, c hll); --根据a列group by对数据分组,把各组数据加到hll中 openGauss=# INSERT INTO t_a_c_hll SELECT a, hll_add_agg(hll_hash_text(c)) FROM t_data GROUP BY a; --得到每组数据中hll的Distinct值 openGauss=# SELECT a, #c as cardinality FROM t_a_c_hll ORDER BY a; a | cardinality ---+------------------ 0 | 247.862354346299 1 | 250.908710610377 (2 rows) hll_add_agg(hll_hashval, int32 log2m) 描述:把哈希后的数据按照分组放到hll中, 并指定参数log2m,取值范围是10到16。若输入-1或者NULL,则采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), 12)) FROM t_data; hll_cardinality ------------------ 497.965240179228 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit) 描述:把哈希后的数据按照分组放到hll中,依次指定参数log2m、log2explicit。 log2explicit取值范围是0到12,0表示直接跳过Explicit模式。该参数可以用来设置Explicit模式的阈值大小,在数据段长度达到2log2explicit后切换为Sparse模式或者Full模式。若输入-1或者NULL,则log2explicit采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit, int64 log2sparse) 描述:把哈希后的数据按照分组放到hll中, 依次指定参数log2m、log2explicit、log2sparse。,log2sparse取值范围是0到14,0表示直接跳过Sparse模式。该参数可以用来设置Sparse模式的阈值大小,在数据段长度达到2log2sparse后切换为Full模式。若输入-1或者NULL,则log2sparse采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 6, 10)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit, int64 log2sparse, int32 duplicatecheck) 描述:把哈希后的数据按照分组放到hll中, 依次指定参数log2m、log2explicit、log2sparse、duplicatecheck,duplicatecheck取值范围是0或者1,表示是否开启该模式,默认情况下该模式会关闭。若输入-1或者NULL,则duplicatecheck采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 6, 10, -1)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_union_agg(hll) 描述:将多个hll类型数据union成一个hll。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 --将各组中的hll数据union成一个hll,并计算distinct值。 openGauss=# SELECT #hll_union_agg(c) as cardinality FROM t_a_c_hll; cardinality ------------------ 498.496062953313 (1 row) --删除表 openGauss=# DROP TABLE t_id; openGauss=# DROP TABLE t_data; openGauss=# DROP TABLE t_a_c_hll; 注意:当两个或者多个hll数据结构做union的时候,必须要保证其中每一个hll里面的精度参数一样,否则将不可以进行union。同样的约束也适用于函数hll_union(hll,hll)。
  • 功能函数 hll_empty() 描述:创建一个空的hll。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_empty(); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m) 描述:创建空的hll并指定参数log2m,取值范围是10到16。若输入-1,则采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(-1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit) 描述:创建空的hll并依次指定参数log2m、log2explicit。log2explicit取值范围是0到12,0表示直接跳过Explicit模式。该参数可以用来设置Explicit模式的阈值大小,在数据段长度达到2log2explicit后切换为Sparse模式或者Full模式。若输入-1,则log2explicit采用内置默认值。 返回值类型: hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse。log2sparse取值范围是0到14,0表示直接跳过Sparse模式。该参数可以用来设置Sparse模式的阈值大小,在数据段长度达到2log2sparse后切换为Full模式。若输入-1,则log2sparse采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4, 8); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, 4, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse, int32 duplicatecheck) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse、duplicatecheck。duplicatecheck取0或者1,表示是否开启该模式,默认情况下该模式会关闭。若输入-1,则duplicatecheck采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 openGauss=# SELECT hll_empty(10, 4, 8, 0); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) openGauss=# SELECT hll_empty(10, 4, 8, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) hll_add(hll, hll_hashval) 描述:把hll_hashval加入到hll中。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_add(hll_empty(), hll_hash_integer(1)); hll_add ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_add_rev(hll_hashval, hll) 描述:把hll_hashval加入到hll中,和hll_add功能一样,只是参数位置进行了交换。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_add_rev(hll_hash_integer(1), hll_empty()); hll_add_rev ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_eq(hll, hll) 描述:比较两个hll是否相等。 返回值类型:bool 示例: 1 2 3 4 5 openGauss=# SELECT hll_eq(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_eq -------- f (1 row) hll_ne(hll, hll) 描述:比较两个hll是否不相等。 返回值类型:bool 示例: 1 2 3 4 5 openGauss=# SELECT hll_ne(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_ne -------- t (1 row) hll_cardinality(hll) 描述:计算hll的distinct值。 返回值类型:int 示例: 1 2 3 4 5 openGauss=# SELECT hll_cardinality(hll_empty() || hll_hash_integer(1)); hll_cardinality ----------------- 1 (1 row) hll_union(hll, hll) 描述:把两个hll数据结构union成一个。 返回值类型:hll 示例: 1 2 3 4 5 openGauss=# SELECT hll_union(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_union -------------------------------------------------------------------------------------------- \x484c4c10002000002b090000000000000000400000000000000000b3ccc49320cca1ae3e2921ff133fbaed00 (1 row)
  • 日志函数 hll主要存在三种模式Explicit,Sparse,Full。当数据规模比较小的时候会使用Explicit模式,这种模式下distinct值的计算是没有误差的;随着distinct值越来越多,hll会先后转换为Sparse模式和Full模式,这两种模式在计算结果上没有任何区别,只影响hll函数的计算效率和hll对象的存储空间。下面的函数可以用于查看hll的一些参数。 hll_print(hll) 描述:打印hll的一些debug参数信息。 示例: 1 2 3 4 5 openGauss=# SELECT hll_print(hll_empty()); hll_print ------------------------------------------------------------------------------- type=1(HLL_EMPTY), log2m=14, log2explicit=10, log2sparse=12, duplicatecheck=0 (1 row) hll_type(hll) 描述:查看当前hll的类型。返回值具体含义如下:返回值0,表示HLL_UNINIT,未初始化的hll对象;返回值1,表示HLL_EMPTY,hll空对象;返回值2,表示HLL_EXPLICIT,Explicit模式的hll对象;返回值3,表示HLL_SPARSE,Sparse模式的hll对象;返回值4,表示HLL_FULL,Full模式的hll对象;返回值5,表示HLL_UNDEFINED,不合法的hll对象。 示例: 1 2 3 4 5 openGauss=# SELECT hll_type(hll_empty()); hll_type ---------- 1 (1 row) hll_log2m(hll) 描述:查看当前hll数据结构中的log2m数值,log2m是分桶数的对数值,此值会影响最后hll计算distinct误差率,误差率计算公式为±1.04/√(2 ^ log2m)。当显式指定log2m的取值为10-16之间时,hll会设置分桶数为2log2m。当显示指定log2explicit为-1时,会采用内置默认值。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 openGauss=# SELECT hll_log2m(hll_empty()); hll_log2m ----------- 14 (1 row) openGauss=# SELECT hll_log2m(hll_empty(10)); hll_log2m ----------- 10 (1 row) openGauss=# SELECT hll_log2m(hll_empty(-1)); hll_log2m ----------- 14 (1 row) hll_log2explicit(hll) 描述:查看当前hll数据结构中的log2explicit数值。hll通常会由Explicit模式到Sparse模式再到Full模式,这个过程称为promotion hierarchy策略。可以通过调整log2explicit值的大小改变策略,比如log2explicit为0的时候就会跳过Explicit模式而直接进入Sparse模式。当显式指定log2explicit的取值为1-12之间时,hll会在数据段长度超过2log2explicit时转为Sparse模式。当显示指定log2explicit为-1时,会采用内置默认值。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 openGauss=# SELECT hll_log2explicit(hll_empty()); hll_log2explicit ------------------ 10 (1 row) openGauss=# SELECT hll_log2explicit(hll_empty(12, 8)); hll_log2explicit ------------------ 8 (1 row) openGauss=# SELECT hll_log2explicit(hll_empty(12, -1)); hll_log2explicit ------------------ 10 (1 row) hll_log2sparse(hll) 描述:查看当前hll数据结构中的log2sparse数值。hll通常会由Explicit模式到Sparse模式再到Full模式,这个过程称为promotion hierarchy策略。可以通过调整log2sparse值的大小改变策略,比如log2sparse为0的时候就会跳过Sparse模式而直接进入Full模式。当显式指定Sparse的取值为1-14之间时,hll会在数据段长度超过2log2sparse时转为Full模式。当显示指定log2sparse为-1时,会采用内置默认值。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 openGauss=# SELECT hll_log2sparse(hll_empty()); hll_log2sparse ---------------- 12 (1 row) openGauss=# SELECT hll_log2sparse(hll_empty(12, 8, 10)); hll_log2sparse ---------------- 10 (1 row) openGauss=# SELECT hll_log2sparse(hll_empty(12, 8, -1)); hll_log2sparse ---------------- 12 (1 row) hll_duplicatecheck(hll) 描述:是否启用duplicatecheck,0是关闭,1是开启。默认关闭,对于有较多重复值出现的情况,可以开启以提高效率。当显示指定duplicatecheck为-1时,会采用内置默认值。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 openGauss=# SELECT hll_duplicatecheck(hll_empty()); hll_duplicatecheck -------------------- 0 (1 row) openGauss=# SELECT hll_duplicatecheck(hll_empty(12, 8, 10, 1)); hll_duplicatecheck -------------------- 1 (1 row) openGauss=# SELECT hll_duplicatecheck(hll_empty(12, 8, 10, -1)); hll_duplicatecheck -------------------- 0 (1 row)
  • JDBC 【规格】JDBC实例必须指定数据库,一旦实例创建,无法切换数据库。 【规格】单条SQL语句的长度不允许超过2G字节,业务应考虑通信成本,建议单条SQL语句不超过5K。 【规格】目前仅支持对CREATE/ALTER TABLE中列的DEFAULT值进行参数化设置,其他DDL使用Prepare Execute执行方式进行参数设置无效。 【规则】JDBC每条PreparedStatement语句中的参数不可超过32767个。 【规格】连接参数fetchsize必须要在autocommit关闭情况下使用,否则fetchsize配置无效。 【规则】使用默认GUC参数,避免通过JDBC发送SET请求修改GUC参数。参考GUC参数编程规范。 【建议】必须使用Prepare Execute方式执行查询语句,提高执行效率。 【规则】在同一个事务中,应逐条执行SQL语句,避免拼接多条SQL作为一条语句发送。 参考【规则】通过JDBC接入数据库时,避免拼接多条SQL为一条语句发送执行。 【规则】JDBC客户端所在主机时区、数据库所在主机时区和数据库配置过程中的时区,三者应保持一致。 【规则】如果在连接中创建了临时表,那么在将连接归还给连接池之前,必须将临时表删除,避免业务出错。 【关注】第三方工具通过JDBC连接GaussDB时,JDBC向GaussDB发起连接请求,会默认添加以下配置参数,详见JDBC代码ConnectionFactoryImpl类的实现。 params = { { "user", user }, { "database", database }, { "client_encoding", "UTF8" }, { "DateStyle", "ISO" }, { "extra_float_digits", "3" }, { "TimeZone", createPostgresTimeZone() }, }; 这些参数可能会导致JDBC客户端的行为与gsql客户端的行为不一致,例如,Date数据显示方式、浮点数精度表示、timezone显示。 如果实际期望和这些配置不符,建议在java连接设置代码中显式设定这些参数。 通过JDBC连接数据库时,会设置extra_float_digits=3,gsql中设置为extra_float_digits=0,可能会使同一条数据在JDBC显示和gsql显示的精度不同。 对于精度敏感的场景,建议使用numeric类型。 【建议】通过JDBC连接数据库时,应该保证下面三个时区设置一致: JDBC客户端所在主机的时区。 GaussDB数据库实例所在主机的时区。 GaussDB数据库实例配置过程中时区。 时区设置相关的操作,请联系管理员。 【建议】在JDBC向GaussDB申请连接的代码中,建议显式开启autocommit。如果基于性能或者其它方面考虑,需要关闭autocommit时,需要应用程序保证事务的提交。例如,在指定的业务SQL执行完之后做显式提交,特别是客户端退出之前务必保证所有的事务已经提交。 【建议】推荐使用连接池限制应用程序的连接数。不建议每执行一条SQL就连接一次数据库。 【建议】在应用程序完成作业任务之后,应当及时断开和GaussDB的连接,释放资源。建议在任务中设置session超时时间参数。 【建议】使用JDBC连接池,在将连接释放给连接池前,需要执行以下操作,重置会话环境。否则,可能会因为历史会话信息导致对象冲突。 如果在连接中设置了GUC参数,那么在将连接归还连接池之前,必须使用“SET SESSION AUTHORIZATION DEFAULT;RESET ALL;”将连接的状态清空。 如果使用了临时表,那么在将连接归还连接池之前,必须将临时表删除。 【建议】在不使用ETL工具,数据入库实时性要求比较高的情况下,建议在开发应用程序时,使用GaussDB JDBC驱动的CopyManager接口进行微批导入。 【建议】合理设置prepareThreshold,如果query语句十分固定,建议设置为1。 【建议】建议设置连接参数batchMode=on,使用batch模式连接,提高执行性能。 【建议】应根据业务上层请求超时时间合理设置JDBC连接超时时间,避免作业完成或超长作业持续占用数据库资源。 超时参数包括loginTimeout、connectTimeout、socketTimeout等。 loginTimeout:Integer类型。指建立数据库连接的等待时间。超时时间单位为秒。默认值为0,表示已禁用,timeout不发生。 connectTimeout:Integer类型。用于连接服务器操作的超时值。如果连接到服务器花费的时间超过此值,则连接断开。超时时间单位为秒,默认值为0,表示已禁用,timeout不发生。 socketTimeout:Integer类型。用于socket读取操作的超时值。如果从服务器读取所花费的时间超过此值,则连接关闭。超时时间单位为秒,默认值为0,表示已禁用,timeout不发生。 cancelSignalTimeout:Integer类型。发送取消消息本身可能会阻塞,此属性控制用于取消命令的“connect超时”和“socket超时”。超时时间单位为秒,默认值为10秒。 tcpKeepAlive:Boolean类型。启用或禁用TCP保活探测功能。默认值为false。 父主题: 客户端编程规范
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • INSERT 【规格】INSERT ON DUPLICATE KEY UPDATE不支持对主键或唯一约束的列上执行UPDATE。 INSERT ON DUPLICATE KEY UPDATE的语义是对唯一约束冲突的行进行更新,这个过程中不应对约束的值进行更新。 【规则】禁止对存在多个唯一约束的表执行INSERT ON DUPLICATE KEY UPDATE。 表中存在多个唯一约束包括存在多个唯一索引,或既存在主键(PRIMARY KEY),又存在唯一索引(UNIQUE INDEX)两种情况。当存在多个唯一约束时,会默认检查所有的唯一约束条件,只要任何一个约束存在冲突,就会对冲突行进行更新,即可能更新多条记录,与业务预期不相符。业务应给予更加明确的插入更新条件。 【建议】对于批量插入的情况,建议使用executeBatch执行INSERT INTO VALUES (?),执行效率将高于执行多条INSERT INTO VALUES(?)或INSERT INTO VALUES(?),...,(?)。 父主题: 数据库编程规范
  • 环境类 Go环境配置 用户需要在环境变量中配置以下参数: GO111MODULE:用户使用在线导入的方式安装Go驱动时需要设置GO111MODULE为on;如果不希望进行go mod工程的改造,需将GO111MODULE设置为off,并手动下载依赖包,依赖包与驱动根目录和业务代码保持同级。 GOPROXY:用户使用在线导入时需配置包含Go驱动包的路径。 用户可以根据自己场景参数配置Go其他相关环境变量。 通过go env查看Go环境变量配置结果,并且查看Go版本是否在1.13或以上。 Go驱动安装 从驱动包中获取Go驱动包到本地。包名为GaussDB-Kernel_数据库版本号_操作系统版本号_64bit_Go.tar.gz。解压后为Go驱动源码包。 进入Go驱动代码根路径,执行go mod tidy下载相关依赖,需要在环境变量中配置GOPATH=${Go驱动依赖包存放路径}。 若依赖已下载至本地,可以在go.mod里面添加一行“通过replace将Go驱动包替换为本地Go驱动包地址”,表示代码里面所有的import Go驱动包都是走本地路径, 同时依赖也不会从代理里下载。 通过go mod tidy下载相关依赖时可能会下载为某个依赖的低版本,如果依赖的低版本存在漏洞,可以通过更改go.mod文件中对应依赖的版本号,更新依赖到漏洞修复后的版本来规避风险。
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 兼容PostgreSQL的函数和操作符 下述列表为GaussDB的内建函数和操作符兼容PostgreSQL。 _pg_char_max_length _pg_char_octet_length _pg_datetime_precision _pg_expandarray _pg_index_position _pg_interval_type _pg_numeric_precision _pg_numeric_precision_radix _pg_numeric_scale _pg_truetypid _pg_truetypmod abbrev abs abstime abstimeeq abstimege abstimegt abstimein abstimele abstimelt abstimene abstimeout abstimerecv abstimesend aclcontains acldefault aclexplode aclinsert aclitemeq aclitemin aclitemout aclremove acos age akeys any_in any_out anyarray_in anyarray_out anyarray_recv anyarray_send anyelement_in anyelement_out anyenum_in anyenum_out anynonarray_in anynonarray_out anyrange_in anyrange_out anytextcat area areajoinsel areasel array_agg array_agg_finalfn array_agg_transfn array_append array_cat array_dims array_eq array_fill array_ge array_gt array_in array_larger array_le array_length array_lower array_lt array_ndims array_ne array_out array_prepend array_recv array_send array_smaller array_to_json array_to_string array_typanalyze array_upper arraycontained arraycontains arraycontjoinsel arraycontsel arrayoverlap ascii asin atan atan2 avals avg big5_to_euc_tw big5_to_mic big5_to_utf8 bit bit_and bit_in bit_length bit_or bit_out bit_recv bit_send bitand bitcat bitcmp biteq bitge bitgt bitle bitlt bitne bitnot bitor bitshiftleft bitshiftright bittypmodin bittypmodout bitxor bool bool_and bool_or booland_statefunc booleq boolge boolgt boolin boolle boollt boolne boolor_statefunc boolout boolrecv boolsend box box_above box_above_eq box_add box_below box_below_eq box_center box_contain box_contain_pt box_contained box_distance box_div box_eq box_ge box_gt box_in box_intersect box_le box_left box_lt box_mul box_out box_overabove box_overbelow box_overlap box_overleft box_overright box_recv box_right box_same box_send box_sub bpchar bpchar_larger bpchar_pattern_ge bpchar_pattern_gt bpchar_pattern_le bpchar_pattern_lt bpchar_smaller bpchar_sortsupport bpcharcmp bpchareq bpcharge bpchargt bpchariclike bpcharicnlike bpcharicregexeq bpcharicregexne bpcharin bpcharle bpcharlike bpcharlt bpcharne bpcharnlike bpcharout bpcharrecv bpcharregexeq bpcharregexne bpcharsend bpchartypmodin bpchartypmodout broadcast btabstimecmp btarraycmp btbeginscan btboolcmp btbpchar_pattern_cmp btbuild btbuildempty btbulkdelete btcanreturn btcharcmp btcostestimate btendscan btfloat48cmp btfloat4cmp btfloat4sortsupport btfloat84cmp btfloat8cmp btfloat8sortsupport btgetbitmap btgettuple btinsert btint24cmp btint28cmp btint2cmp btint2sortsupport btint42cmp btint48cmp btint4cmp btint4sortsupport btint82cmp btint84cmp btint8cmp btint8sortsupport btmarkpos btnamecmp btnamesortsupport btoidcmp btoidsortsupport btoidvectorcmp btoptions btrecordcmp btreltimecmp btrescan btrestrpos btrim bttext_pattern_cmp bttextcmp bttextsortsupport bttidcmp bttintervalcmp btvacuumcleanup bytea_sortsupport bytea_string_agg_finalfn bytea_string_agg_transfn byteacat byteacmp byteaeq byteage byteagt byteain byteale bytealike bytealt byteane byteanlike byteaout bytearecv byteasend cash_cmp cash_div_cash cash_div_flt4 cash_div_flt8 cash_div_int2 cash_div_int4 cash_div_int8 cash_eq cash_ge cash_gt cash_in cash_le cash_lt cash_mi cash_mul_flt4 cash_mul_flt8 cash_mul_int2 cash_mul_int4 cash_mul_int8 cash_ne cash_out cash_pl cash_recv cash_send cashlarger cashsmaller cbrt ceil ceiling center char char_length character_length chareq charge chargt charin charle charlt charne charout charrecv charsend chr cideq cidin cidout cidr cidr_in cidr_out cidr_recv cidr_send cidrecv cidsend circle circle_above circle_add_pt circle_below circle_center circle_contain circle_contain_pt circle_contained circle_distance circle_div_pt circle_eq circle_ge circle_gt circle_in circle_le circle_left circle_lt circle_mul_pt circle_ne circle_out circle_overabove circle_overbelow circle_overlap circle_overleft circle_overright circle_recv circle_right circle_same circle_send circle_sub_pt clock_timestamp close_lb close_ls close_lseg close_pb close_pl close_ps close_sb close_sl col_description concat concat_ws contjoinsel contsel convert convert_from convert_to corr cos cot count covar_pop covar_samp cstring_in cstring_out cstring_recv cstring_send cume_dist current_database current_query current_schema xpath_exists current_setting current_user currtid currtid2 currval cursor_to_xml cursor_to_xmlschema database_to_xml database_to_xml_and_xmlschema database_to_xmlschema date date_cmp date_cmp_timestamp date_cmp_timestamptz date_eq date_eq_timestamp date_eq_timestamptz date_ge date_ge_timestamp date_ge_timestamptz date_gt date_gt_timestamp date_gt_timestamptz date_in date_larger date_le date_le_timestamp date_le_timestamptz date_lt date_lt_timestamp date_lt_timestamptz date_mi date_mi_interval date_mii date_ne date_ne_timestamp date_ne_timestamptz date_out date_pl_interval date_pli date_recv date_send date_smaller date_sortsupport daterange_canonical daterange_subdiff datetime_pl datetimetz_pl dcbrt decode defined degrees delete dense_rank dexp diagonal diameter dispell_init dispell_lexize dist_cpoly dist_lb dist_pb dist_pc dist_pl dist_ppath dist_ps dist_sb dist_sl div dlog1 dlog10 domain_in domain_recv dpow dround dsimple_init dsimple_lexize dsnowball_init dsnowball_lexize dsqrt dsynonym_init dsynonym_lexize dtrunc each enum_ne enum_out enum_range enum_recv enum_send enum_smaller eqjoinsel eqsel euc_cn_to_mic euc_cn_to_utf8 euc_jis_2004_to_shift_jis_2004 euc_jis_2004_to_utf8 euc_jp_to_mic euc_jp_to_sjis euc_jp_to_utf8 euc_kr_to_mic euc_kr_to_utf8 euc_tw_to_big5 euc_tw_to_mic euc_tw_to_utf8 every exist exists_all exists_any exp factorial family fdw_handler_in fdw_handler_out fetchval first_value float4 float4_accum float48div float48eq float48ge float48gt float48le float48lt float48mi float48mul float48ne float48pl float4abs float4div float4eq float4ge float4gt float4in float4larger float4le float4lt float4mi float4mul float4ne float4out float4pl float4recv float4send float4smaller float4um float4up float8 float8_accum float8_avg float8_collect float8_corr float8_covar_pop float8_covar_samp float8_regr_accum float8_regr_avgx float8_regr_avgy float8_regr_collect float8_regr_intercept float8_regr_r2 float8_regr_slope float8_regr_sxx float8_regr_sxy float8_regr_syy float8_stddev_pop float8_stddev_samp float8_var_pop float8_var_samp float84div float84eq float84ge float84gt float84le float84lt float84mi float84mul float84ne float84pl float8abs float8div float8eq float8ge float8gt float8in float8larger float8le float8lt float8mi float8mul float8ne float8out float8pl float8recv float8send float8smaller float8um float8up floor flt4_mul_cash flt8_mul_cash fmgr_c_validator fmgr_internal_validator fmgr_sql_validator format format_type gb18030_to_utf8 gbk_to_utf8 generate_series generate_subscripts get_bit get_byte get_current_ts_config - - gin_clean_pending_list gin_cmp_prefix gin_cmp_tslexeme gin_extract_tsquery gin_extract_tsvector gin_tsquery_consistent gin_tsquery_triconsistent ginarrayconsistent ginarrayextract ginarraytriconsistent ginbeginscan ginbuild ginbuildempty ginbulkdelete gincostestimate ginendscan gingetbitmap gininsert ginmarkpos ginoptions ginqueryarrayextract ginrescan ginrestrpos ginvacuumcleanup gist_box_compress gist_box_consistent gist_box_decompress gist_box_penalty gist_box_picksplit gist_box_same gist_box_union gist_circle_compress gist_circle_consistent gist_point_compress gist_point_consistent gist_point_distance gist_poly_compress gist_poly_consistent gistbeginscan gistbuild gistbuildempty gistbulkdelete gistcostestimate gistendscan gistgetbitmap gistgettuple gistinsert gistmarkpos gistoptions gistrescan gistrestrpos gistvacuumcleanup gtsquery_compress gtsquery_consistent gtsquery_decompress gtsquery_penalty gtsquery_picksplit gtsquery_same gtsquery_union gtsvector_compress gtsvector_consistent gtsvector_decompress gtsvector_penalty gtsvector_picksplit gtsvector_same gtsvector_union gtsvectorin gtsvectorout has_tablespace_privilege has_type_privilege hash_aclitem hashbeginscan hashbuild hashbuildempty hashbulkdelete hashcostestimate hashendscan hashgetbitmap hashgettuple hashinsert hashint2vector hashint4 hashint8 hashmacaddr hashmarkpos hashname hashoid hashoidvector hashoptions hashrescan hashrestrpos hashtext hashvacuumcleanup hashvarlena host hostmask iclikejoinsel iclikesel icnlikejoinsel icnlikesel icregexeqjoinsel icregexeqsel icregexnejoinsel icregexnesel inet_client_addr inet_client_port inet_in inet_out inet_recv inet_send inet_server_addr inet_server_port inetand inetmi inetmi_int8 inetnot inetor inetpl initcap int2_accum int2_avg_accum int2_mul_cash int2_sum int24div int24eq int24ge int24gt int24le int24lt int24mi int24mul int24ne int24pl int28div int28eq int28ge int28gt int28le int28lt int28mi int28mul int28ne int28pl int2abs int2and int2div int2eq int2ge int2gt int2in int2larger int2le int2lt int2mi int2mod int2mul int2ne int2not int2or int2out int2pl int2recv int2send int2shl int2shr int2smaller int2um int2up int2vectoreq int2vectorin int2vectorout int2vectorrecv int2vectorsend int2xor int4_accum int4_avg_accum int4_mul_cash int4_sum int42div int42eq int42ge int42gt int42le int42lt int42mi int42mul int42ne int42pl int48div int48eq int48ge int48gt int48le int48lt int48mi int48mul int48ne int48pl int4abs int4and int4div int4eq int4ge int4gt int4in int4inc int4larger int4le int4lt int4mi int4mod int4mul int4ne int4not int4or int4out int4pl int4range int4range_canonical int4range_subdiff int4recv int4send int4shl int4shr int4smaller int4um int4up int4xor int8 int8_avg int8_avg_accum int8_avg_collect int8_mul_cash int8_sum int8_sum_to_int8 int8_accum int82div int82eq int82ge int82gt int82le int82lt int82mi int82mul int82ne int82pl int84div int84eq int84ge int84gt int84le int84lt int84mi int84mul int84ne int84pl int8abs int8and int8div int8eq int8ge int8gt int8in int8inc int8inc_any int8inc_float8_float8 int8larger int8le int8lt int8mi int8mod int8mul int8ne int8not int8or int8out int8pl int8pl_inet int8range int8range_canonical int8range_subdiff int8recv int8send int8shl int8shr int8smaller int8um int8up int8xor integer_pl_date inter_lb inter_sb inter_sl internal_in internal_out interval interval_accum interval_avg interval_cmp interval_collect interval_div interval_eq interval_ge interval_gt interval_hash interval_in interval_larger interval_le interval_lt interval_mi interval_mul interval_ne interval_out interval_pl interval_pl_date interval_pl_time interval_pl_timestamp interval_pl_timestamptz interval_pl_timetz interval_recv interval_send interval_smaller interval_transform interval_um intervaltypmodin intervaltypmodout intinterval isexists ishorizontal iso_to_koi8r iso_to_mic iso_to_win1251 iso_to_win866 iso8859_1_to_utf8 iso8859_to_utf8 isparallel isperp isvertical johab_to_utf8 jsonb_in jsonb_out jsonb_recv jsonb_send - - - json_in json_out json_recv json_send justify_days justify_hours justify_interval koi8r_to_iso koi8r_to_mic koi8r_to_utf8 koi8r_to_win1251 koi8r_to_win866 koi8u_to_utf8 language_handler_in language_handler_out latin1_to_mic latin2_to_mic latin2_to_win1250 latin3_to_mic latin4_to_mic like_escape likejoinsel likesel line line_distance line_eq line_horizontal line_in line_interpt line_intersect line_out line_parallel line_perp line_recv line_send line_vertical ln lo_close lo_creat lo_create lo_export lo_import lo_lseek lo_open lo_tell lo_truncate lo_unlink log loread lower lower_inc lower_inf lowrite lpad lseg lseg_center lseg_distance lseg_eq lseg_ge lseg_gt lseg_horizontal lseg_in lseg_interpt lseg_intersect lseg_le lseg_length lseg_lt lseg_ne lseg_out lseg_parallel lseg_perp lseg_recv lseg_send lseg_vertical ltrim macaddr_and macaddr_cmp macaddr_eq macaddr_ge macaddr_gt macaddr_in macaddr_le macaddr_lt macaddr_ne macaddr_not macaddr_or macaddr_out macaddr_recv macaddr_send makeaclitem masklen max md5(MD5加密算法安全性低,存在安全风险,建议使用更安全的加密算法) mic_to_big5 mic_to_euc_cn mic_to_euc_jp mic_to_euc_kr mic_to_euc_tw mic_to_iso mic_to_koi8r mic_to_latin1 mic_to_latin2 mic_to_latin3 mic_to_latin4 mic_to_sjis mic_to_win1250 mic_to_win1251 mic_to_win866 min mktinterval money mul_d_interval name nameeq namege namegt nameiclike nameicnlike nameicregexeq nameicregexne namein namele namelike namelt namene namenlike nameout namerecv nameregexeq nameregexne namesend neqjoinsel neqsel network_cmp network_eq network_ge network_gt network_le network_lt network_ne network_sub network_subeq network_sup network_supeq nlikejoinsel nlikesel numeric numeric_abs numeric_accum numeric_add numeric_avg numeric_avg_accum numeric_avg_collect numeric_cmp numeric_collect numeric_div numeric_div_trunc numeric_eq numeric_exp numeric_fac numeric_ge numeric_gt numeric_in numeric_inc numeric_larger numeric_le numeric_ln numeric_log numeric_lt numeric_mod numeric_mul numeric_ne numeric_out numeric_power numeric_recv numeric_send numeric_smaller numeric_sortsupport numeric_sqrt numeric_stddev_pop numeric_stddev_samp numeric_sub numeric_transform numeric_uminus numeric_uplus numeric_var_pop numeric_var_samp numerictypmodin numerictypmodout numrange_subdiff oid oideq oidge oidgt oidin oidlarger oidle oidlt oidne oidout oidrecv oidsend oidsmaller oidvectoreq oidvectorge oidvectorgt oidvectorin oidvectorle oidvectorlt oidvectorne oidvectorout oidvectorrecv oidvectorsend oidvectortypes on_pb on_pl on_ppath on_ps on_sb on_sl opaque_in opaque_out ordered_set_transition overlaps overlay path path_add path_add_pt path_center path_contain_pt path_distance path_div_pt path_in path_inter path_length path_mul_pt path_n_eq path_n_ge path_n_gt path_n_le path_n_lt path_npoints path_out path_recv path_send path_sub_pt percentile_cont percentile_cont_float8_final percentile_cont_interval_final pg_char_to_encoding pg_cursor pg_encoding_max_length pg_encoding_to_char - - - pg_node_tree_in pg_node_tree_out pg_node_tree_recv pg_node_tree_send pg_prepared_statement pg_prepared_xact - - pg_show_all_settings pg_stat_get_bgwriter_stat_reset_time pg_stat_get_buf_fsync_backend pg_stat_get_checkpoint_sync_time pg_stat_get_checkpoint_write_time pg_stat_get_db_blk_read_time pg_stat_get_db_blk_write_time pg_stat_get_db_conflict_all pg_stat_get_db_conflict_bufferpin pg_stat_get_db_conflict_snapshot pg_stat_get_db_conflict_startup_deadlock pg_switch_xlog xpath pg_timezone_abbrevs pg_timezone_names pg_stat_get_wal_receiver plpgsql_call_handler plpgsql_inline_handler plpgsql_validator point_above point_add point_below point_distance point_div point_eq point_horiz point_in point_left point_mul point_ne point_out point_recv point_right point_send point_sub point_vert poly_above poly_below poly_center poly_contain poly_contain_pt poly_contained poly_distance poly_in poly_left poly_npoints poly_out poly_overabove poly_overbelow poly_overlap poly_overleft poly_overright poly_recv poly_right poly_same poly_send polygon position positionjoinsel positionsel postgresql_fdw_validator pow power prsd_end prsd_headline prsd_lextype prsd_nexttoken prsd_start pt_contained_circle pt_contained_poly query_to_xml query_to_xml_and_xmlschema query_to_xmlschema quote_ident quote_literal quote_nullable radians radius random range_adjacent range_after range_before range_cmp range_contained_by range_contains range_contains_elem range_eq range_ge range_gist_compress range_gist_consistent range_gist_decompress range_gist_penalty range_gist_picksplit range_gist_same range_gist_union range_gt range_in range_intersect range_le range_lt range_minus range_ne range_out range_overlaps range_overleft range_overright range_recv range_send range_typanalyze range_union rank record_eq record_ge record_gt record_in record_le record_lt record_ne record_out record_recv record_send regclass regclassin regclassout regclassrecv regclasssend regconfigin regconfigout regconfigrecv regconfigsend regdictionaryin regdictionaryout regdictionaryrecv regdictionarysend regexeqjoinsel regexeqsel regexnejoinsel regexnesel regexp_matches regexp_replace regexp_split_to_array regexp_split_to_table regoperatorin regoperatorout regoperatorrecv regoperatorsend regoperin regoperout regoperrecv regopersend regprocedurein regprocedureout regprocedurerecv regproceduresend regprocin regprocout regprocrecv regprocsend regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy regr_syy regtypein regtypeout regtyperecv regtypesend reltime reltimeeq reltimege reltimegt reltimein reltimele reltimelt reltimene reltimeout reltimerecv reltimesend repeat replace reverse RI_FKey_cascade_del RI_FKey_cascade_upd RI_FKey_check_ins RI_FKey_check_upd RI_FKey_noaction_del RI_FKey_noaction_upd RI_FKey_restrict_del RI_FKey_restrict_upd RI_FKey_setdefault_del RI_FKey_setdefault_upd RI_FKey_setnull_del RI_FKey_setnull_upd right round row_number row_to_json rpad rtrim scalargtjoinsel scalargtsel scalarltjoinsel scalarltsel schema_to_xml schema_to_xml_and_xmlschema schema_to_xmlschema session_user set_bit set_byte set_config set_masklen shift_jis_2004_to_euc_jis_2004 shift_jis_2004_to_utf8 sjis_to_euc_jp sjis_to_mic sjis_to_utf8 smgrin smgrout spg_kd_choose spg_kd_config spg_kd_inner_consistent spg_kd_picksplit spg_quad_choose spg_quad_config spg_quad_inner_consistent spg_quad_leaf_consistent spg_quad_picksplit spg_text_choose spg_text_config spg_text_inner_consistent spg_text_leaf_consistent spg_text_picksplit spgbeginscan spgbuild spgbuildempty spgbulkdelete spgcanreturn spgcostestimate spgendscan spggetbitmap spggettuple spginsert spgmarkpos spgoptions spgrescan spgrestrpos spgvacuumcleanup stddev stddev_pop stddev_samp string_agg string_agg_finalfn string_agg_transfn strip sum suppress_redundant_updates_trigger table_to_xml table_to_xml_and_xmlschema table_to_xmlschema tan text text_ge text_gt text_larger text_le text_lt text_pattern_ge text_pattern_gt text_pattern_le text_pattern_lt text_smaller textanycat textcat texteq texticlike texticnlike texticregexeq texticregexne textin textlike textne textnlike textout textrecv textregexeq textregexne textsend thesaurus_init thesaurus_lexize tideq tidge tidgt tidin tidlarger tidle tidlt tidne tidout tidrecv tidsend tidsmaller time time_cmp time_eq time_ge time_gt time_hash time_in time_larger time_le time_lt time_mi_interval time_mi_time time_ne time_out time_pl_interval time_recv time_send time_smaller time_transform timedate_pl timemi timepl timestamp timestamp_cmp timestamp_cmp_date timestamp_cmp_timestamptz timestamp_eq timestamp_eq_date timestamp_eq_timestamptz timestamp_ge timestamp_ge_date timestamp_ge_timestamptz timestamp_gt timestamp_gt_date timestamp_gt_timestamptz timestamp_hash timestamp_in timestamp_larger timestamp_le timestamp_le_date timestamp_le_timestamptz timestamp_lt timestamp_lt_date timestamp_lt_timestamptz timestamp_mi timestamp_mi_interval timestamp_ne timestamp_ne_date timestamp_ne_timestamptz timestamp_out timestamp_pl_interval timestamp_recv timestamp_send timestamp_smaller timestamp_sortsupport timestamp_transform timestamptypmodin timestamptypmodout timestamptz timestamptz_cmp timestamptz_cmp_date timestamptz_cmp_timestamp timestamptz_eq timestamptz_eq_date timestamptz_eq_timestamp timestamptz_ge timestamptz_ge_date timestamptz_ge_timestamp timestamptz_gt timestamptz_gt_date timestamptz_gt_timestamp timestamptz_in timestamptz_larger timestamptz_le timestamptz_le_date timestamptz_le_timestamp timestamptz_lt timestamptz_lt_date timestamptz_lt_timestamp timestamptz_mi timestamptz_mi_interval timestamptz_ne timestamptz_ne_date timestamptz_ne_timestamp timestamptz_out timestamptz_pl_interval timestamptz_recv timestamptz_send timestamptz_smaller timestamptztypmodin timestamptztypmodout timetypmodin timetypmodout timetz timetz_cmp timetz_eq timetz_ge timetz_gt timetz_hash timetz_in timetz_larger timetz_le timetz_lt timetz_mi_interval timetz_ne timetz_out timetz_pl_interval timetz_recv timetz_send timetz_smaller timetzdate_pl timetztypmodin timetztypmodout timezone(2069) timezone(1159) timezone(2037) timezone (2070) timezone (1026) timezone (2038) tintervalct tintervaleq tintervalge tintervalgt tintervalin tintervalle tintervalleneq tintervallenge tintervallengt tintervallenle tintervallenlt tintervallenne tintervallt tintervalne tintervalout tintervalov tintervalrecv tintervalsame tintervalsend tintervalstart to_ascii(1845) to_ascii(1847) to_ascii(1846) trigger_in trigger_out ts_match_qv ts_match_tq ts_match_tt ts_match_vq ts_rank ts_rank_cd ts_rewrite ts_stat ts_token_type ts_typanalyze tsmatchjoinsel tsmatchsel tsq_mcontained tsq_mcontains tsquery_and tsquery_cmp tsquery_eq tsquery_ge tsquery_gt tsquery_le tsquery_lt tsquery_ne tsquery_not tsquery_or tsqueryin tsqueryout tsqueryrecv tsquerysend tsrange tsrange_subdiff tstzrange tstzrange_subdiff tsvector_cmp tsvector_concat tsvector_eq tsvector_ge tsvector_gt tsvector_le tsvector_lt tsvector_ne tsvector_update_trigger tsvector_update_trigger_column tsvectorin tsvectorout tsvectorrecv tsvectorsend txid_current txid_current_snapshot txid_snapshot_in txid_snapshot_out txid_snapshot_recv txid_snapshot_send txid_snapshot_xip txid_snapshot_xmax txid_snapshot_xmin txid_visible_in_snapshot uhc_to_utf8 unique_key_recheck unknownin unknownout unknownrecv unknownsend unnest utf8_to_big5 utf8_to_euc_cn utf8_to_euc_jis_2004 utf8_to_euc_jp utf8_to_euc_kr utf8_to_euc_tw utf8_to_gb18030 utf8_to_gbk utf8_to_iso8859 utf8_to_iso8859_1 utf8_to_johab utf8_to_koi8r utf8_to_koi8u utf8_to_shift_jis_2004 utf8_to_sjis utf8_to_uhc utf8_to_win uuid_cmp uuid_eq uuid_ge uuid_gt uuid_hash uuid_in uuid_le uuid_lt uuid_ne uuid_out uuid_recv uuid_send var_pop var_samp varbit varbit_in varbit_out varbit_recv varbit_send varbit_transform varbitcmp varbiteq varbitge varbitgt varbitle varbitlt varbitne varbittypmodin varbittypmodout varchar varchar_transform varcharin varcharout varcharrecv varcharsend varchartypmodin varchartypmodout variance void_in void_out void_recv void_send win_to_utf8 win1250_to_latin2 win1250_to_mic win1251_to_iso win1251_to_koi8r win1251_to_mic win1251_to_win866 win866_to_iso win866_to_koi8r win866_to_mic win866_to_win1251 xideq xideqint4 xidin xidout xidrecv xidsend xml xml_in xml_is_well_formed xml_is_well_formed_content xml_is_well_formed_document xml_out xml_recv xml_send xmlagg xmlcomment xmlconcat2 xmlexists xmlvalidate pg_notify - -
  • 字段设计规范 【规则】字段设计应使用推荐类型。 字段设计需使用推荐字段,如果需要使用禁用、不推荐的字段类型,建议联系数据库专家进行评估。有些数据类型不推荐的原因是业务使用场景较少,未大规模商用。 表1 数据库数据类型最佳实践 数据类型 说明 是否推荐 UUID 不同数据库可能产生相同UUID 禁止 序列整型 即自增列,包括SMALLSERIAL、SERIAL、BIGSERIAL 禁止 整数类型 TINYINT、SMALLINT、INTEGER、BIGINT 推荐 任意精度类型 NUMERIC/DECIMAL 推荐 浮点类型 REAL/FLOAT4、DOUBLE PRECISION/FLOAT8、FLOAT 推荐 布尔类型 BOOLEAN 推荐 定长字符 CHAR(n) 推荐 变长字符 VARCHAR(n)、NVARCHAR2(n) 推荐 TEXT/CLOB(字符大对象) 不推荐 时间类型 DATE、TIME、TIMESTAMP、SMALLDATETIME、INTERVAL、REALTIME 推荐 TIMETZ,TIMESTAMPTZ 不推荐 二进制类型 BYTEA(变长二进制类型) 推荐 BLOB(二进制大对象),RAW(变长十六进制) 不推荐 位串类型 BIT(n)、VARBIT(n) 推荐 特殊字符类型 NAME、"CHAR",通常供数据库系统内部使用 不推荐 JSON类型 JSON类型目前不支持操作符 不推荐 自定义类型 可用于定义枚举EMU等类型 不推荐 HLL数据类型 建议直接使用HLL相关函数,减少性能影响 不推荐 货币类型 MONEY 存储带有固定小数精度的货币金额 不推荐 几何类型 POINT、LSEG、BOX、PATH、POLYGON、CIRCLE 不推荐 网络地址类型 存储IPV4 MAC地址数据类型 不推荐 【规则】尽量使用高效的数值类数据类型。在满足业务精度的情况下,选择的优先级从高到低依次为整数、浮点数、NUMERIC。 【规则】合理设置数值字段的数据类型,根据取值范围选择合适的数值类型,尽量少用NUMERIC/DECIMAL类型。 NUMERIC和DECIMAL等价,NUMERIC/DECIMAL数据类型操作对CPU消耗较高。 表2 数值类数据类型存储空间及取值范围 类型 存储空间 最小值 最大值 TINYINT 1 0 255 SMALLINT 2 -32768 32767 INTEGER 4 -2,147,483,648 2,147,483,647 BIGINT 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807 REAL/FLOAT4 4 6位十进制数字精度 DOUBLE PRECISION/FLOAT8 8 15位十进制数字精度 【规则】合理选用字符串数据类型。如果该字段输入确定为固定字符则使用定长字符类型,或需要自动补充空格,否则请使用变长字符类型VARCHAR。 典型的定长字段类型,例如“gender”字段,仅允许输入“f”或“m”一个字节长度的字符。这类字段建议使用定长数据类型(如CHAR(n))。 如果不存在此特点,或者后续可能扩展需要输入更长的字符,请优先使用变长字符类型(如VARCHAR, TEXT),且不建议指定变长类型的长度。 原因如下: 定长字段会对不够长度的输入数据补充空格,然后存入数据库中,产生不必要的存储空间浪费。 如果定义为定长字符类型,后续扩展长度,需要对全表进行扫描重写,性能开销大,影响在线业务。 对于指定固定长度的变长字段,每次插入时会检查是否长度越界,带来性能开销。 【规则】字符类型字段不应存储数字类型的数据。 如果对存储在字符类型字段中的数据进行数值计算,或者与数值进行比较操作(如置于过滤条件中),会带来不必要的数据类型转换的开销,同时该字段上的索引可能失效,影响查询性能。 【规则】字符类型字段不应存储时间或日期类数据。 如果对存储在字符类型字段中的数据与日期类数据进行计算或比较操作(如置于过滤条件中),会带来不必要的数据类型转换的开销,同时该字段上的索引可能失效,影响查询性能。 【规则】对于明确不存在NULL值的字段加上NOT NULL约束。 对于NOT NULL字段,优化器在某些场景下会进行特殊优化,可提升查询性能。 【规则】相关联字段的数据类型应保持一致。 在进行关联操作时,如果字段类型不一致,会带来数据类型转换开销。 【建议】当多个表存在逻辑关系时,表示同一含义的字段应该使用相同的数据类型。 【建议】对于字符串数据,建议使用变长字符串数据类型,并指定最大长度。请务必确保指定的最大长度大于需要存储的最大字符数,避免超出最大长度时出现字符截断现象。除非明确知道数据类型为固定长度字符串,否则,不建议使用CHAR(n)、BPCHAR(n)、NCHAR(n)、CHARACTER(n)。 【规则】大字段(例如varchar(1000)、varchar(4000))不超过8个。 【建议】字段定义时建议同时创建COMMENT注释信息,以便于未来维护。 不同类型字段说明、取值范围及使用方法请参考数据类型章节。 【建议】用于WHERE条件过滤和关联的字段都应设置NOT NULL约束。 对于NOT NULL字段,优化器在某些场景下会进行特殊优化,可较大提升查询性能。 【建议】不建议对表预留字段。大部分场景下可支持快速新增、删除表字段,或者修改字段的DEFAULT值。 新增列必须符合以下要求,否则会带来全表更新开销,影响在线业务。 数据类型为以下类型中的一种:BOOL, BYTEA, SMALLINT, BIGINT, SMALLINT, INTEGER, NUMERIC, FLOAT, DOUBLE PRECISION, CHAR, VARCHAR, TEXT, TIMESTAMPTZ, TIMESTAMP, DATE, TIME, TIMETZ, INTERVAL。 新增列的DEFAULT值长度不超过128个字节。 新增列DEFAULT值不包含volatile函数。 新增列设置有DEFAULT值,且DEFAULT值不为NULL。 如果不确定是否满足条件3,请联系GaussDB数据库技术人员进行评估。 父主题: 数据库设计规范
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-2.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 获取ODBC包以及依赖库 ODBC包以及依赖库支持两种操作系统(Linux和Windows),请用户根据实际情况进行选择。 Linux系统: 从驱动包中获取,包名为GaussDB-Kernel-数据库版本号-操作系统版本号-64bit-Odbc.tar.gz。Linux环境下,开发应用程序要用到unixODBC提供的头文件(sql.h、sqlext.h等)和库libodbc.so。 这些头文件和库可从unixODBC-2.3.7的源码包中获得。 Windows系统: 从驱动包中获取,包名为GaussDB-Kernel_数据库版本号_Windows_X86_Odbc.tar.gz(32位)和GaussDB-Kernel-数据库版本号-Windows-X64-Odbc.tar.gz(64位)。 Windows环境下,开发应用程序用到的相关头文件和库文件由系统自带。
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-3.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
  • 获取ODBC包以及依赖库 ODBC包以及依赖库支持两种操作系统(Linux和Windows),请用户根据实际情况进行选择。 Linux系统: 从驱动包中获取,包名为GaussDB-Kernel_数据库版本号_操作系统版本号_64bit_Odbc.tar.gz。Linux环境下,开发应用程序要用到unixODBC提供的头文件(sql.h、sqlext.h等)和库libodbc.so。 这些头文件和库可从unixODBC-2.3.7的源码包中获得。 Windows系统: 从驱动包中获取,包名为GaussDB-Kernel_数据库版本号_Windows_X86_Odbc.tar.gz(32位)和GaussDB-Kernel_数据库版本号_Windows_X64_Odbc.tar.gz(64位)。 Windows环境下,开发应用程序用到的相关头文件和库文件由系统自带。
  • 环境类 Go环境配置 用户需要在环境变量中配置以下参数: GO111MODULE:用户使用在线导入的方式安装Go驱动时需要设置GO111MODULE为on。如果不希望进行go mod工程的改造,需将GO111MODULE设置为off,并手动下载依赖包。依赖包与驱动根目录和业务代码保持同级。 GOPROXY:用户使用在线导入时需配置包含Go驱动包的路径。 用户可以根据自己场景参数配置Go其他相关环境变量。 通过go env查看Go环境变量配置结果,并且查看Go版本是否在1.13或以上。 Go驱动安装 从驱动包中获取Go驱动包。包名为GaussDB-Kernel_数据库版本号_操作系统版本号_64bit_Go.tar.gz。解压后为Go驱动源码包。 进入Go驱动代码根路径,执行go mod tidy下载相关依赖,需要在环境变量中配置GOPATH=${Go驱动依赖包存放路径}。 若依赖已下载至本地,可以在go.mod里面添加一行“通过replace将Go驱动包替换为本地Go驱动包地址”,表示代码里面所有的import Go驱动包都是走本地路径, 同时依赖也不会从代理里下载。 数据库提供的Go驱动包依赖Go 1.13及以上版本。 通过go mod tidy下载相关依赖时,可能会下载某个依赖的低版本,如果依赖的低版本存在漏洞,可以通过更改go.mod文件中对应依赖的版本号的方式,更新依赖到漏洞修复后的版本进行规避风险。
  • 获取驱动包 下载表1中的驱动包和驱动包校验包。 表1 驱动包下载列表 版本 下载地址 V2.0-3.x 驱动包 驱动包校验包 为了防止软件包在传递过程或存储期间被恶意篡改,下载软件包时需下载对应的校验包对软件包进行校验,校验方法如下: Linux操作系统软件包完整性校验: 上传软件包和软件包校验包到虚拟机的同一目录下。 执行如下命令,校验软件包完整性。 cat GaussDB_driver.zip.sha256 | sha256sum --check 如果回显OK,则校验通过。 GaussDB_driver.zip: OK Windows操作系统软件包完整性校验: 使用快捷键“Win+R”打开“运行”窗口。 在“打开”栏,输入“cmd”,按“Enter”回车,打开命令行页面。 执行以下命令,获取驱动包的Hash值。 certutil -hashfile {驱动包本地目录}\{驱动包名} sha256 {驱动包本地目录}:请根据实际下载目录进行替换。例如:C:\Users {驱动包名}:请根据实际下载的驱动包名进行替换。例如:GaussDB_driver.zip 示例:certutil -hashfile C:\Users\GaussDB_driver.zip sha256 将2获取到的Hash值和表1中获取到的驱动包校验包的Hash值进行比较。 若一致则通过校验。 若不一致,请重新下载驱动包,重复1~3进行校验。
共100000条