华为云用户手册

  • 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook直接编辑scripts/llama2/2_convert_mg_hf.sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。 其中环境变量详细介绍如下: 表1 权重转换脚本中的环境变量 参数 示例 参数说明 $1 hf2hg、mg2hf 运行 2_convert_mg_hf.sh 时,需要附加的参数值。如下: hf2hg:用于Hugging Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/work/model/Llama2-13B 原始Hugging Face模型路径 CONVERT_MODEL_PATH /home/ma-user/work/llm_train/processed_for_ma_input/llama2-13b/converted_weights_TP8PP1 权重转换完成之后保存路径 TOKENIZER_PATH /home/ma-user/work/model/llama-2-13b-chat-hf tokenizer路径,即:原始Hugging Face模型路径 MODEL_SAVE_PATH /home/ma-user/work/llm_train/saved_dir_for_output/llama2-13b 训练完成后保存的权重路径。
  • HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir : 权重转换完成之后保存路径。 --tokenizer-model : tokenizer路径。
  • msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。 首先通过在PyTorch训练脚本中插入dump接口,跟踪计算图中算子的前向传播与反向传播时的输入与输出,然后再使用子命令compare进行比对生成比对表格。当前比对结果支持计算Cosine(余弦相似度)、MaxAbsErr(最大绝对误差)和MaxRelativeErr(最大相对误差)、One Thousandth Err Ratio(双千分之一)和Five Thousandths Err Ratio(双千分之五)这几种评价指标,工具通过阈值过滤筛选出不达标API的输入输出提示用户进行重点关注。使用步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和标杆的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger debugger = PrecisionDebugger(config_path='./config.json') ... debugger.start() # 一般在训练循环开头启动工具。 ... # 循环体 debugger.stop() # 一般在训练循环末尾结束工具。 debugger.step() # 在训练循环的最后需要重置工具,非循环场景不需要。 具体的config.json的配置要求请参见介绍。 创建比对compare.json文件。 单卡场景 { "npu_path": "./npu_dump/dump.json", "bench_path": "./bench_dump/dump.json", "stack_path": "./npu_dump/stack.json", "is_print_compare_log": true } 多卡场景 { "npu_path": "./npu_dump/step0", "bench_path": "./bench_dump/step0", "is_print_compare_log": true } 单卡场景npu_path、bench_path、stack_path分别表示从步骤2中NPU环境所生成的dump.json、标杆环境生成的dump.json及NPU环境生成的stack.json文件,is_print_compare_log配置是否开启日志打屏。 多卡场景区别于单卡场景会在步骤2按rank标号信息生成多个rank的dump文件结果,npu_path指定NPU环境生成包含多rank目录,gpu_path指定标杆环境包含多rank目录,is_print_compare_log配置是否开启日志打屏。 精度比对生成比对报告 msproe -f pytorch compare -i ./compare.json -o ./output -s 这里-i指定步骤3所创建compare.json文件,-o指定比对结果文件存盘目录,-s配置是否生成堆栈信息。生成结果为advisor_{timestamp}.txt和compare_result_{timestamp}.xlsx文件,advisor_{timestamp}.txt列出了可能存在精度问题的API的专家建议,compare_result_{timestamp}.xlsx文件列出了所有执行精度比对的API详细信息和比对结果。 详细工具的使用指导请参考Pytorch精度比对介绍。 父主题: msprobe工具使用指导
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.912-xxx.zip软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一: swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241213131522-aafe527 从SWR拉取。
  • Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step4 准备训练环境 下载权重。从HuggingFace下载Qwen-VL-Chat,或将您已下载的权重文件上传到容器工作目录${container_work_dir}中。 # 模型结构如下: Qwen-VL-Chat/ ├── config.json ├── configuration_qwen.py ├── generation_config.jsons ├── modeling_qwen.py ├── pytorch_model-00001-of-00010.bin ├── pytorch_model-00002-of-00010.bin ├── pytorch_model-00003-of-00010.bin ├── pytorch_model-00004-of-00010.bin ├── pytorch_model-00005-of-00010.bin ├── pytorch_model-00006-of-00010.bin ├── pytorch_model-00007-of-00010.bin ├── pytorch_model-00008-of-00010.bin ├── pytorch_model-00009-of-00010.bin ├── pytorch_model-00010-of-00010.bin ├── pytorch_model.bin.index.json ├── qwen_generation_utils.py ├── qwen.tiktoken ├── README.md ├── SimSun.ttf ├── tokenization_qwen.py ├── tokenizer_config.json └── visual.py 赋予容器访问权重文件的权限。上传文件到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。 #统一文件属主为ma-user用户 sudo chown -R ma-user:ma-group ${container_work_dir} # ${container_work_dir}:/home/ma-user/ws 容器内挂载的目录 #例如:sudo chown -R ma-user:ma-group /home/ma-user/ws 在容器中解压代码包并执行Qwen-VL安装脚本。 # 解压代码包 unzip AscendCloud-AIGC-6.3.912-*.zip rm -rf AscendCloud-AIGC-6.3.912-* # 执行安装脚本 # model_path 配置为Qwen-VL的权重路径,例:/home/ma-user/Qwen-VL-Chat git config --global http.sslVerify false bash multimodal_algorithm/QwenVL/train/aa00ed04091eea5fcdd32985e7915f1c53e7d599/qwen-vl_install.sh cp -f ${container_work_dir}/multimodal_algorithm/ascendcloud_multimodal_plugin/ascendcloud_multimodal/train/models/qwenvl/modeling_qwen.py ${container_work_dir}/Qwen-VL-Chat
  • Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参见获取软件和镜像。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。训练默认使用单机8卡。 docker run -itd --net=host \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=64g \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /var/log/npu/:/usr/slog \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。 ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 ${image_id}:镜像ID,通过docker images查看刚拉取的镜像ID。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 进入容器。需要将${container_name}替换为实际的容器名称。启动容器默认使用ma-user用户。 docker exec -it ${container_name} bash
  • 离线推理使用Guided Decoding 离线推理,要使用guided-decoding,需要通过SamplingParams类中的GuidedDecodingParams进行配置。 下面是一种离线使用方式示例: from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams MODEL_NAME = ${MODEL_NAME} llm = LLM(model=MODEL_NAME) guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"]) sampling_params = SamplingParams(guided_decoding=guided_decoding_params) outputs = llm.generate( prompts="Classify this sentiment: vLLM is wonderful!", sampling_params=sampling_params, ) print(outputs[0].outputs[0].text) MODEL_NAME表示对应模型路径。
  • 在线推理使用Guided Decoding 启动推理服务请参考启动推理服务章节。 在线推理使用Guided Decoding时,在发送的请求中包含上述guided_json架构,具体示例可参考以下代码。 curl -X POST http://${docker_ip}:8080/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "${container_model_path}", "prompt": "Meet our valorous character, named Knight, who has reached the age of 32. Clad in impenetrable plate armor, Knight is well-prepared for any battle. Armed with a trusty sword and boasting a strength score of 90, this character stands as a formidable warrior on the field.Please provide details for this character, including their Name, Age, preferred Armor, Weapon, and Strength", "max_tokens": 200, "temperature": 0, "guided_json": "{\"title\": \"Character\", \"type\": \"object\", \"properties\": {\"name\": {\"title\": \"Name\", \"maxLength\": 10, \"type\": \"string\"}, \"age\": {\"title\": \"Age\", \"type\": \"integer\"}, \"armor\": {\"$ref\": \"#/definitions/Armor\"}, \"weapon\": {\"$ref\": \"#/definitions/Weapon\"}, \"strength\": {\"title\": \"Strength\", \"type\": \"integer\"}}, \"required\": [\"name\", \"age\", \"armor\", \"weapon\", \"strength\"], \"definitions\": {\"Armor\": {\"title\": \"Armor\", \"description\": \"An enumeration.\", \"enum\": [\"leather\", \"chainmail\", \"plate\"], \"type\": \"string\"}, \"Weapon\": {\"title\": \"Weapon\", \"description\": \"An enumeration.\", \"enum\": [\"sword\", \"axe\", \"mace\", \"spear\", \"bow\", \"crossbow\"], \"type\": \"string\"}}}" }'
  • 什么是guided-decoding Guided Decoding是一种用于生成文本的策略,通过提供额外的上下文或约束,来引导模型生成更符合预期的结果。 比如使用openai启动服务,通过配置guided_json参数使用JSON Schema的架构来举例。 JSON Schema使用专门的关键字来描述数据结构,例如标题title、 类型type、属性properties,必须属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 其优势主要如下: 上下文引导:通过提供特定的提示或上下文信息,模型可以更好地理解生成内容的方向。 约束生成:可以设定某些限制条件,如关键词、主题或风格,使生成的内容更加一致和相关。 提高质量:通过引导,生成的文本通常更具逻辑性和连贯性,减少无关信息的出现。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.907中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包 ├── build.sh # 推理构建脚本 ├── vllm_install.patch # 社区昇腾适配的补丁包 ├── Dockerfile # 推理构建镜像dockerfile ├── build_image.sh # 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测 ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字
  • 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • Step2 为用户配置云服务使用权限 主用户为子账号授予ModelArts、OBS等云服务的使用权限后,子账号才可以使用这些云服务。此步骤介绍如何为用户组中的所有子账号授予使用ModelArts、OBS、SWR等各类云服务的权限。 主用户在 IAM 服务的用户组列表页面,单击“授权”,进入到授权页面,为子账号配置权限。 图1 为用户组授权 配置授权前,请先了解ModelArts各模块使用到的最小权限要求,如表1所示。 配置ModelArts使用权限。在搜索框搜索ModelArts。ModelArts FullAccess权限和ModelArts CommonOperations权限只能二选一,不能同时选。 选择说明如下: ModelArts CommonOperations没有任何专属资源池的创建、更新、删除权限,只有使用权限。推荐给子账号配置此权限。 如果需要给子账号开通专属资源池的创建、更新、删除权限,此处要勾选ModelArts FullAccess,请谨慎配置。 配置OBS使用权限。搜索OBS,勾选“OBS Administrator”。ModelArts训练作业中需要依赖OBS作为数据中转站,需要配置OBS的使用权限。 配置SWR使用权限。搜索SWR,勾选“SWR FullAccess”。ModelArts的自定义镜像功能依赖 镜像服务 SWR FullAccess权限。 (可选)配置密钥管理权限。如果需要使用ModelArts Notebook的SSH访问功能,依赖密钥管理权限。搜索DEW,勾选“DEW KeypairFullAccess”。 此处需要注意以下Region配置的是DEW密钥管理权限:华北-北京一、华北-北京四、华东-上海一、华东-上海二、华南-广州、西南-贵阳一、中国-香港、亚太-新加坡。其他Region配置的是KMS密钥管理权限。本示例中使用“华南-广州”Region举例,所以需要配置DEW密钥管理权限。 (可选)配置智能边缘平台使用权限。ModelArts的边缘服务依赖智能边缘平台,要求配置Tenant Administrator权限。 注意:Tenant Administrator权限比较大,包含全部云服务的管理权限,而不仅是使用ModelArts服务。请谨慎配置。 (可选) 配置 CES 云监控和 SMN 消息通知使用权限。ModelArts推理部署的在线服务详情页面内有调用次数详情,单击可查看该在线服务的调用次数随时间详细分布的情况。如果想进一步通过CES 云监控 查看ModelArts的在线服务和对应模型负载运行状态的整体情况,需要给子账号授予CES权限。 如果只是查看监控,给子账号授予CES ReadOnlyAccess权限即可。 如果还需要在CES上设置监控告警,则需要再加上CES FullAccess权限,以及SMN 消息通知 权限。 (可选)配置VPC权限。如果用户在创建专属资源池过程中,需要开启自定义网络配置,此处需要授予用户VPC权限。 (可选)配置SFS和SFS Turbo权限。如果用户在专属资源池中挂载SFS系统作为开发环境或训练的存储时,需要授予使用权限。 单击左上角的“查看已选”,确认已勾选的权限。 再单击“下一步”,设置最小授权范围。单击“指定区域项目资源”,勾选待授权使用的区域,单击“确定”。 提示授权成功,查看授权信息,单击“完成”。此处的授权生效需要15-30分钟。 父主题: 配置ModelArts基本使用权限
  • 附录:Standard大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len is greater than the drived max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m", block_size=128) 问题4:使用llama3.1系模型进行推理时,报错:ValueError: 'rope_scaling' must be a dictionary with two fields, 'type' and 'factor', got {'factor': 8.0, 'low_freq_factor': 1.0, 'high_freq_factor': 4.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError: type object 'LlamaAttention' has no attribute '_init_rope' 解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with two fields, `type` and `factor`, 解决方法:将transformers升级到4.44.0,修改对应transformers中的transformers/models/llama/modeling_llama.py,在class LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
  • Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。 图1 创建训练作业 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用E CS 中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh
  • Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL_HF_WEIGHT:加载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输出的路径(确保添加CONVERT_MG2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。
  • Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。 如果要使用自动重启功能,资源规格必须选择八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。
  • 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/model目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具
  • 使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path /home/ma-user/llama-2-7b/ --quantize-model --generate-scale --dataset-path /data/nfs/user/val.jsonl --scale-output scales/llama2-7b.pt --model-output quantized_model/llama2-7b --per-token --per-channel 参数说明: --model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,如果之前已生成过量化系数,则可指定该参数,跳过生成scale的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题: 推理模型量化
  • Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{model_name}下生成多少次结果。benchmark_eval下生成的log中记录了客户端产生结果。数据集的打分结果在result/{model_name}/...目录下,查找到summmary目录,有txt和csv两种保存格式。总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。
  • Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6。 benchmark_eval ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3.9.10 bash install.sh 在/home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/llm_evaluation/benchmark_eval目录下安装依赖。 cd opencompass #在benchmark_eval目录下 pip install -e . #下载对应依赖 cd ../human-eval #在benchmark_eval目录下 (可选,如果选择使用humaneval数据集) pip install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤进行评测。 # WARNING # This program exists to execute untrusted model-generated code. Although # it is highly unlikely that model-generated code will do something overtly # malicious in response to this test suite, model-generated code may act # destructively due to a lack of model capability or alignment. # Users are strongly encouraged to sandbox this evaluation suite so that it # does not perform destructive actions on their host or network. For more # information on how OpenAI sandboxes its code, see the accompanying paper. # Once you have read this disclaimer and taken appropriate precautions, # uncomment the following line and proceed at your own risk: # exec(check_program, exec_globals) #第58行 执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len} \ batch_size=${batch_size} \ eval_datasets=${eval_datasets} \ model_name=${model_name} \ benchmark_type=${benchmark_type} \ bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置小一些,比如16。在运行human_eval等生成式回答(生成式回答是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。 benchmark_type:作为一个保存log结果中的一个变量名,默认选eval。 参考命令: vllm_path=vllm host=0.0.0.0 service_port=8080 max_out_len=16 batch_size=2 eval_datasets=mmlu_gen model_name=llama_7b benchmark_type=eval bash -x opencompass.sh (可选)如果同时运行多个数据集,需要将不同数据集通过空格分开,加入到eval_datasets中,比如eval_datasets=ceval_gen mmlu_gen。运行命令如下所示。 cd opencompass python run.py --models vllm --datasets mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/opencompass/models/vllm_api.py 中,可以适当调整 gpu_memory_utilization。如果还是 oom,建议适当往下调整。 最后,如果执行报错提示oom,建议修改数据集的shot配置。例如mmlu,可以修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的 fix_id_list, 将最大值适当调低。 ppl困惑度评测一般用于base权重测评,会将n个选项上拼接上下文,形成n个序列,再计算这n个序列的困惑度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=expandable_segments:False 执行脚本如下: python run.py --models vllm_ppl --datasets mmlu_ppl -w ${output_path} output_path 指定保存结果的路径。 参考模型llama3系列模型,数据集mmlu为例,配置如下: 表1 参数配置 模型 max_seq_len batch_size shot数 llama3_8b 3200 8 采用默认值 llama3_70b 3200 4 [0, 1, 2] (可选) opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码 import torch import torch_npu from torch_npu.contrib import transfer_to_npu 执行脚本如下 # for llama3_8b python run.py --datasets mmlu_ppl \ --hf-type base --hf-path {hf-path} \ --max-seq-len 3200 --max-out-len 16 --hf-num-gpus 1 --batch-size 4 \ -w {output_path} --debug 参数说明如下: --datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home/ma-user/nfs/model/Meta-Llama-3-8B。 --max-seq-len:模型的最大序列长度。 --max-out-len:模型的最大输出长度。 --hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。
  • 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。 吞吐量(tokens/s/p):global batch size*seq_length/(总卡数*elapsed time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图)
  • 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1 llama2 llama2-7b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=2 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend 2 llama2-13b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 3 llama2-70b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 4 llama3 llama3-8b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 5 llama3-70b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 6 Qwen qwen-7b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 7 qwen-14b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 8 qwen-72b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 9 Qwen1.5 qwen1.5-7b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend 10 qwen1.5-14b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 11 qwen1.5-32b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 12 qwen1.5-72b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 13 Yi yi-6b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend 14 yi-34b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=4 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=4 2 2*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend 15 ChatGLMv3 glm3-6b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend 16 Baichuan2 baichuan2-7b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 17 baichuan2-13b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 1 2*节点 & 8*Ascend 18 Qwen2 qwen2-0.5b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 19 qwen2-1.5b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 20 qwen2-7b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 21 qwen2-72b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend 22 GLMv4 glm4-9b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=2 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 23 mistral mistral-7b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend 24 mixtral mixtral-8x7b full 4096 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=8 1 2*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=8 1 2*节点 & 8*Ascend 25 llama3.1 llama3.1-8b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 26 llama3.1-70b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 27 Qwen2.5 qwen2.5-0.5b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 28 qwen2.5-7b full 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 29 qwen2.5-14b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 30 qwen2.5-32b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 31 qwen2.5-72b full 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 4 4*节点 & 8*Ascend full 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend 32 llama3.2 llama3.2-1b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 33 llama3.2-3b full 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend full 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend
  • Megatron转HuggingFace参数说明 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。若用户需要自动转换,则在运行脚本,例如0_pl_pretrain_13b.sh中,添加变量CONVERT_MG2HF并赋值TRUE。若用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下: --model-type:模型类型。 --save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数target-tensor-parallel-size,默认为1。 --target-pipeline-parallel-size :任务不同调整参数target-pipeline-parallel-size,默认为1。 输出转换后权重文件保存路径: 权重转换完成后,在 /home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。
  • 用户自定义执行权重转换参数修改说明 同样以 llama2 为例,用户可直接编辑 scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 表1 权重转换脚本中的环境变量 参数 示例 参数说明 $1 hf2hg、mg2hf 运行 2_convert_mg_hf.sh 时,需要附加的参数值。如下: hf2hg:用于Hugging Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/model/Llama2-13B 原始Hugging Face模型路径 CONVERT_MODEL_PATH /home/ma-user/ws/processed_for_ma_input/llama2-13b/converted_weights_TP8PP1 权重转换完成之后保存路径 TOKENIZER_PATH /home/ma-user/ws/tokenizers/Llama2-13B tokenizer路径,即:原始Hugging Face模型路径 MODEL_SAVE_PATH /home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b 训练完成后保存的权重路径。
  • HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir : 权重转换完成之后保存路径。 --tokenizer-model : tokenizer路径。
  • Step2 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240528150158-b521cc0 CANN:cann_8.0.rc2 PyTorch:2.1.0
  • 创建OBS桶 ModelArts使用 对象存储服务 (Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。具体过程请参考创建OBS桶,例如桶名:standard-llama2-13b。 由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。
  • ECS服务器挂载SFS Turbo ECS服务器中手动挂载SFS Turbo步骤如下: 用户可通过CloudShell或SSH等方式登录并访问ECS服务器,进入ECS终端界面。创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。 图4 SFS Turbo基本信息
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全